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Abstract

This thesis focuses on cryptanalysis techniques and design of block ciphers. In
particular, modern analysis methods such as square, boomerang, impossible
differential and linear attacks are described and applied to real block ciphers.

The first part of this thesis concentrates on the two most relevant modern
cryptanalysis techniques: linear and differential cryptanalysis. These and re-
lated techniques have been applied to SAFER K/SK/+/++, IDEA, Hierocrypt-
3, Hierocrypt-L1, Skipjack and the PES ciphers. In many attacks, the interac-
tion between the block cipher and its key schedule algorithm was exploited, so
that the complexity of key-recovery attacks could be reduced. These analyses
often led to the discovery of weak keys, namely, key values for which the attack
complexity was comparatively lower than for a random key. In some cases, the
existence of weak keys, derived from the original key schedule, and holding for
the whole cipher, might suggest a need for a redesign of the key setup algorithm.

The second part of this thesis describes and analyzes new block ciphers,
called MESH, which were designed with the same group operations as the IDEA
block cipher. Three designs are presented: MESH-64, MESH-96, and MESH-
128. Their novel features include: (i) flexible block sizes (in increments of 32
bits), (ii) larger round functions (MA-boxes) compared to IDEA, (iii) distinct
key-mixing layers for odd and even rounds, and (iv) new key schedule algorithms
that achieve fast key avalanche. Estimates for the software performance of
MESH ciphers indicate better or comparable speed to that of triple-DES. A
preliminary security evaluation of these three ciphers included truncated and
impossible differentials, linear, square, slide and advanced-slide, multiplicative
differentials (on simplified versions), and Demirci’s attacks, among others. The
initial results of these attacks seem to indicate that the MESH ciphers present
a relatively large margin of security against modern cryptanalysis techniques.
Other cipher designs are further suggested, based on the flexible MA-boxes, and
on the alternative AM-boxes.





Samenvatting

Dit proefschrift behandelt de cryptanalyse en het ontwerp van blokcijfers. In het
bijzonder moderne cryptanalyse-methoden zoals “Square”-aanvallen, boemerang-
aanvallen, onmogelijke differentiëlen en lineaire cryptanalyse worden beschreven
en toegepast op blokcijfers.

In het eerste deel van dit proefschrift behandelen we de twee belangrijkste
moderne cryptanalysemethodes: lineaire en differentiële cryptanalyse. Deze en
aanverwante methodes hebben we toegepast op SAFER K/SK/+/++, IDEA,
Hierocrypt-3, Hierocrypt-L1, Skipjack en de PES cijfers. In vele gevallen kun-
nen we de complexiteit van aanvallen reduceren door de interactie tussen een
blokcijfer en zijn sleutelschema uit te buiten. Deze analyses leiden dan tot de
definitie van zwakke sleutels, namelijk sleutels waarvoor de complexiteit van
de aanval lager is dan gemiddeld. In sommige gevallen duidt het bestaan van
zwakke sleutels, afgeleid van het oorspronkelijke sleutelschema en geldig voor
het volledige cijfer, op een nood om het ontwerp van het sleutelschema te her-
bekijken.

In het tweede deel van dit proefschrift beschrijven en analyzeren we een
nieuwe familie van blokcijfers, “MESH” genaamd, die we ontworpen hebben op
basis van dezelfde groepsoperaties als het blokcijfer IDEA. We beschrijven drie
ontwerpen: MESH-64, MESH-96 en MESH-128. Enkele van de nieuwigheden in
deze ontwerpen zijn: (i) de flexibiliteit op het gebied van bloklengte (in stappen
van 32 bits); (ii) ronde-functies (“MA-boxen”) met grotere afmetingen dan bij
IDEA; (iii) verschillende manieren om de rondesleutel in te brengen voor even
en oneven ronden, en (iv) nieuwe sleutelschema’s die een groot lawine-effect
hebben. Schattingen voor de performantie van software-implementaties van de
MESH-cijfers wijzen op een snelheid vergelijkbaar met of groter dan die van 3-
DES. We presenteren een eerste evaluatie van de veiligheid van deze drie cijfers,
die onder andere de volgende technieken omvatte: “truncated” en onmogelijke
differentiëlen, lineaire cryptanalyze, “Square”-aanvallen, schuif- en geavanceerde
schuif-aanvallen, multiplicatieve differentiëlen, en de technieken beschreven door
Demirci. De voorlopige resultaten lijken aan te wijzen dat de MESH cijfers
een relatief grote veiligheidsmarge bezitten tegen modere cryptanalysemethodes.
Daarnaast stellen we enkele andere ontwerpen voor cijfers voor, gebaseerd op
de flexibele MA-boxen en op de alternatieve AM-boxen.
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Chapter 1

Introduction

Though we know that time has wings ...
we are the ones who have to fly.

Rush. Everyday Glory.

Since ancient times the need for secure communication has been the main
motivation for the development of cryptology. The word cryptology is derived
from the Greek words cryptos, meaning hidden, and logos, meaning word.

Cryptology has a long and rich history. The Spartan scytale [11], for ex-
ample, is reported as one of the oldest methods for concealing information. It
consisted of written messages on a strip of cloth wrapped around a staff of a
given diameter. The cloth was subsequently unwrapped and sent to its recip-
ient, who should possess a staff of equal size and diameter as the originator
in order to unveil its content (Singh [213]). Even though the relation between
the staff diameter and the strip width results in a small key space that fails
to provide adequate security for modern standards, this device was apparently
strong enough to provide the needed privacy at that time. Another example of
a cryptographic method is Caesar’s cipher, in which each message character is
replaced by the character n positions forward in the alphabet, where n is the
key. Recovering the original message consisted in replacing the given charac-
ter by the one three positions back in the alphabet. The drawback is that the
same message letter is always represented by the same enciphered letter, so the
message statistics are carried over to the ciphertext. The key can be found by
exhaustive search, since the number of possible offsets is at most the size of the
alphabet.

Cryptology comprises two complementary fields: cryptography and cryptanal-
ysis. In cryptography one is concerned with the development of techniques for
providing services such as data confidentiality, and entity authentication. In
cryptanalysis one is concerned with methods to attack these cryptographic al-
gorithms, that is, to assess and explore design features that may lead to the
discovery of some piece of secret information.

A typical scenario for cryptology involves two parties, informally called Alice

1
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Encrypt Decrypt

secure channel

Key

messagemessage

Eve

insecure channel

Alice Bob

and Bob, who wish to communicate via an insecure channel. The term insecure
means that the data traffic across the channel is publicly accessible, and may
therefore be subject to eavesdropping and tampering by a third party, named
Eve. If both Alice and Bob can share a secure cryptographic algorithm and a
secret piece of information, called a key, then they can exchange enciphered data
instead of messages in clear. Ideally, an eavesdropper listening to the channel
will only intercept unintelligible text, and might not understand the content
of the conversation without knowing the secret key. Thus, a definition that
summarizes the context of secure communication is (Rivest [195]):

“Cryptography is about communication in the presence of adversaries.”
Historically, the main uses of cryptography were related to military and

diplomatic communications and intelligence gathering (Kahn [104]). As an ex-
ample of its importance is the Ultra project, aimed at systematically breaking
German messages encrypted by Enigma machines in World War II. Although the
primary objectives concerning communication security were privacy and data au-
thentication [67], cryptology evolved to comprise many other cryptographic ser-
vices including time-stamping, non-repudiation, anonymity, and key/certificate
revocation (Menezes et al. [160]). The growing demand for a larger set of ser-
vices is due to the widespread use of all kinds of digital means for information
transmission and storage, in substitution for paper-based ones. Cryptographic
applications nowadays are not only restricted to military purposes anymore,
but have many useful commercial applications, such as in electronic commerce,
wireless communication, and teleconferencing.

1.1 Thesis Outline and Contributions

This thesis focuses on analysis techniques and design of block ciphers.1 In par-
ticular, the practical security evaluation of block ciphers is emphasized, namely,
methods that assume an attacker with limited computational resources.

1Refer to Chap. 2 for more detailed explanations.
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Among the many events that motivated the research presented in this thesis,
two of them have had a broad repercussion: the Advanced Encryption Standard
(AES) Development Effort [2], and the NESSIE Project [179].

The outline of this thesis is the following:

• Chapter 1 provides motivations for research in cryptography in general,
and in cryptanalysis in particular.

• Chapter 2 lists basic terminology and definitions which are relevant to
the following chapters. The main contribution of this chapter is related to
two aspects of the design of modern block ciphers: diffusion and confusion.
The results of this chapter have been presented in [168, 170].

• Chapter 3 provides an overview of the technique of linear cryptanalysis.
The contribution of this chapter concerns linear attacks on reduced-round
variants of the SAFER family of block ciphers, designed by Massey et
al. in [146, 149]. These ciphers include SAFER K/SK, the former AES
candidate SAFER+, and the NESSIE candidate SAFER++. The analysis
results were presented in [169, 170]. Linear analyses on PES and some
extended variants, based on [172] are also described.

• Chapter 4 provides an overview of the technique of differential cryptanal-
ysis and some derived attack methods. A contribution of this chapter con-
cerns a related technique, known as the square attack. One such attack,
based on [167], is applied to the NESSIE candidate block cipher IDEA;
another attack deals with the NESSIE candidates Hierocrypt-3/-L1 [8],
both results being joint work with Vincent Rijmen, Paulo S.L.M. Barreto
and Hae Y. Kim; further results on the Skipjack cipher are based on an
unpublished technical report [173]. Another contribution of this chapter
concerns advanced differential cryptanalysis techniques called boomerang
attacks. The latter is described for IDEA, and is based on [31], a joint
work with Alex Biryukov. Another contribution of this chapter is based on
[172], and concerns differential analysis of the PES cipher. The analyses
include the new key schedule algorithm suggested by Daemen in [57].

• Chapter 5 describes as a new contribution [174], a series of new block
cipher designs, called MESH, based on the same group operations as the
IDEA block cipher. A full description of the MESH ciphers and their key
schedule algorithms is provided, and their practical security is evaluated
against a number of attacks.

• Chapter 6 contains the final comments, the main conclusions, and suggests
some topics for further research.

• Appendix E contains a description of a separate piece of research, related
to the security assessment of some proposals for secret sharing protocols.
The contribution in this appendix is a joint work with Keith Martin, and
the results have been presented in [145].
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1.2 The AES Development Process

For more than 20 years the Data Encryption Standard (DES) has been the US
Government standard method for encrypting sensitive but unclassified informa-
tion, besides being a worldwide de facto standard. DES was published in 1977
as FIPS PUB 46, and had been reviewed by the National Bureau of Standards
(NBS), later called National Institute of Standards and Technology (NIST), ev-
ery five years. The first review was in 1983 and DES was reaffirmed as a suitable
standard. The second review happened in 1988 and it was re-issued as FIPS
PUB 46-1 [176]. The third revision occurred in 1993, and DES was again re-
issued as FIPS 46-2 [181]. In the last FIPS 46-3, triple-DES in EDE mode was
suggested as a more appropriate alternative algorithm, offering a higher level of
security [184].

Most of the attacks on DES since its release require either large amounts
of known/chosen text2 or computing time. Nonetheless, the announcement of
a special-purpose hardware constructed by the Electronic Frontier Foundation
(EFF) [76] for exhaustive DES key search in 1997 provided more evidence that
DES had reached the end of its lifetime, and NIST could no longer support the
use of DES.

On Jan. 2, 1997, NIST announced a process to develop a successor to DES,
named Advanced Encryption Standard (AES) [2] to be used for at least the next
30 years. A set of minimal requirements for candidate algorithms was pub-
licly released by NIST, and the various criticisms received were discussed in a
workshop held on Apr. 15, 1997.

On Sep. 12, 1997, NIST published its formal call for an unclassified, publicly
disclosed encryption algorithm to be made available royalty-free worldwide [230].
The algorithm should be a secret-key block cipher with a 128-bit block size, and
should allow variable key sizes of 128, 192 and 256 bits. Larger block and
key sizes were allowed. It was anticipated that security, cost (computational
efficiency) and implementation characteristics were the most important criteria.

By the final submission deadline of Jun. 15, 1998 a total of 21 candidate
algorithms were proposed to NIST. Fifteen of them were accepted as fulfilling
the minimal requirements (Table 1.1). These fifteen algorithms were publicly
presented during the first AES Conference [199] on Aug. 20–22, 1998 and a
request for comments was issued by NIST in order to help it decide which
algorithms should be selected for the next round of analysis.

On Mar. 22, 1999, NIST sponsored the Second AES Conference [70] whose
objectives were: to present the first round of analyses results of the fifteen AES
candidates, to discuss relevant issues (security, efficiency and design flexibility),
and to provide indications for candidates which should be selected for the next
round of evaluation. The finalist algorithms for the second round of analysis
were announced on Apr. 15, 1999: MARS, RC6, Rijndael, Serpent, and Twofish.
The rationale for their selection was provided in [178]. These five finalist ciphers
received further analysis during a second review period. The third AES confer-

2Refer to Chap. 2, Sect. 2.1 for more detailed explanation.
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Table 1.1: The initial AES candidates.

Cipher Submitted by Type #Rounds (]) Source
CAST-256 Entrust Technologies Feistel 48 [1]
Crypton Future Systems SPN 12 [141]
Deal Outerbridge, Knudsen Feistel 6/6/8 [116]
DFC ENS-CNRS Feistel 8 [81]
E2 NTT Feistel 12 [186]
Frog TecApro International SPN 8 [80]
HPC Schroeppel Omni 8 [206]
LOKI97 Brown et al. Feistel 16 [46]
Magenta Deutsche Telecom Feistel 6/6/8 [98]
Mars IBM Feistel 32 [47]
RC6 RSA Laboratories Feistel 20 [196]
Rijndael Daemen, Rijmen SPN 10/12/14 [61]
Safer+ Cylink SPN 8/12/16 [150]
Serpent Anderson et al. SPN 32 [16]
Twofish Counterpane Feistel 16 [205]

]: multiple values refer to 128-, 192- and 256-bit keys.

ence was held in New York on Apr. 10–12, 2000 in order to present and discuss
the results of these analyses. Public comments about the finalist algorithms
were due May 15, 2000.

On Oct. 2, 2000, NIST announced the selection of Rijndael as the new AES.
The rationale for the final selection was provided in [177]. The final comment
period for the FIPS process ended May 29, 2001, and on Nov. 26, 2001, the
FIPS-197, officially describing the AES, was released [2].

During the AES Process a linear attack of one of its former candidates,
SAFER+, was conducted, resulting in [169].

1.3 The NESSIE Project

The New European Schemes for Signature, Integrity and Encryption (NESSIE)
[179] is a project within the Information Societies Technology (IST) Programme
of the European Commission. The main objective of the project is to put
forward a portfolio of strong cryptographic primitives. The project goal is to
widely disseminate the project results and to build consensus based on these
results by using the appropriate fora (a project industry board, 5th Framework
program, and various standardization bodies). The partners of NESSIE are:
Katholieke Universiteit Leuven (Belgium), École Normale Supérieure (France),
Royal Holloway (UK), Siemens AG (Germany), Technion (Israel), Université
Catholique de Louvain (Belgium), and Universitetet i Bergen (Norway).

The scope of the NESSIE Project is much broader than the AES; NESSIE



6 CHAPTER 1. INTRODUCTION

Table 1.2: The initial NESSIE block cipher candidates.

Cipher Submitted by Block Key #Rounds
Size Size

CS CS Comm. Security 64 ≤ 128 8
Hierocrypt-L1 Toshiba Corp. 64 128 6
IDEA MediaCrypt AG 64 128 8.5
Khazad Barreto, Rijmen 64 128 8
Misty1 Mitsubishi Corp. 64 128 8
Nimbus Machado 64 128 5
SAFER++ Cylink Corp. 64 128 8
Anubis Barreto, Rijmen 128 32N 8+N]
Camellia NTT, Mitsubishi 128 128/192/256 18
Grand Cru Borst 128 128 9
Hierocrypt-3 Toshiba Corp. 128 128/192/256 6/7/8
Noekeon Daemen et al. 128 128 16
Q McBride 128 variable 8/9
RC6 RSA Labs. 128 0-256 17
SC2000 Fujitsu Labs. 128 128/192/256 19/22/22
SAFER++ Cylink Corp. 128 128/256 7/10
NUSH LAN Crypto 128 ≥ 128 17
SHACAL Handschuh, Naccache 160 512 80

] : 4 ≤ N ≤ 10

intends to select primitives providing confidentiality, data integrity, and authen-
tication. For the purposes of this work, only the block cipher candidates are
analyzed; a list is presented in Table 1.2, with reference information in [179].

In Jan. 2000, the first phase of NESSIE started. An open call for candidates
algorithm was released in Mar. 2000, and the first NESSIE Workshop was held
at the K.U. Leuven, Belgium on Nov. 13–14, 2000, for a preliminary assessment
of the submissions. This phase finished in 2001. The second phase started on
Sep. 12–13, 2001 with the second NESSIE Workshop held at Royal Holloway,
London. The third workshop was held in Munich, Germany on Nov. 6–7, 2002.
The last workshop was held in Lund, Sweden on Feb. 25, 2003. The final decision
for the NESSIE portfolio for block ciphers included Misty1 for 64-bit block size,
AES and Camellia for 128-bit block size, and SHACAL-2 for 256-bit3 block size.

The NESSIE Project motivated the analysis of four candidate block ciphers:
SAFER++ [170], Hierocrypt-3, Hierocrypt-L1 [8], and IDEA [167].

3Submitted later as a tweak of SHACAL for larger block sizes.



Chapter 2

An Overview of Block
Ciphers

In this chapter, some basic terminology in cryptology will be described.1 Com-
mon notions include the term sender, designating the legitimate originator of a
message, and the term receiver, designating the legitimate recipient of a mes-
sage. Both are called legitimate parties. An adversary is an unauthorized entity,
who aims at breaking into the communication between the legitimate ones, in
order to gain some advantage from the intercepted communication. This third
party is also called enemy, cryptanalyst or attacker. A passive adversary only
intercepts messages, while an active adversary may also insert, delete or modify
them. Both sender and receiver aim at exchanging information securely, even
in the presence of an adversary.

A communication channel designates any physical means for conveying in-
formation. A secure channel is characterized by being immune to eavesdropping
and interference. Comparatively, an insecure channel does not guarantee either
confidentiality or integrity. Concerning messages, meaningful and intelligible in-
formation, in some appropriate setting, is termed plaintext, while its concealed
form is called ciphertext.

As stated by Borst in [42], “... achieving information security involves shift-
ing the trust from untrusted components to trustworthy components. This can
be efficiently accomplished with cryptographic techniques.”

The objectives of information security include: privacy, data-integrity, entity
and message authentication, signature, authorization, validation, access control,
certification, time stamping, witnessing, receipt, confirmation, ownership, ano-
nymity, non-repudiation and revocation.

Cryptology comprises the study of mathematical techniques related to as-
pects of information security such as confidentiality, data integrity, entity and
data-origin authentication. Cryptology comprises two complementary fields:
cryptography and cryptanalysis.

1Additional terminology can be found in [66, 160, 195, 202, 225]

7
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All the objectives of information security can be met by a framework con-
sisting of the following services [160]:

• Privacy or Confidentiality: is a service which aims at keeping secret the
content of information to all parties, except those authorized to access it.

• Data Integrity: is a service which addresses the unauthorized alteration
of data. It aims at detecting illegal data manipulation such as insertion,
deletion and substitution.

• Authentication: can be divided into entity authentication, which is related
to identification of parties entering a communication session; and data-
origin authentication, which provides identification information about the
sender or source of data.

• Non-repudiation: is a service which prevents an entity from denying previ-
ous commitments or actions.

In order to achieve the objectives of information security, a set of cryptographic
tools or cryptographic primitives are used. Examples of primitives are encryp-
tion algorithms, hash functions, and digital signature schemes [160]. These
primitives can be used as building blocks for other primitives or cryptosystems
(ciphers).

A cryptographic system or cryptosystem is composed of:

• A plaintext space P consisting of a set of strings over some alphabet Ξ,
that defines the possible plaintext messages. |P| denotes its size.

• A ciphertext space C consisting of a set of strings over some alphabet Σ,
that defines the possible ciphertext messages. |C| denotes its size.

• A key space K consisting of a set of strings over some alphabet Ψ, that
defines the possible keys. |K| denotes its size.

• A set of encryption algorithms EK : P → C, with K ∈ K.

• A set of decryption algorithms DK : C → P, with K ∈ K, for which the
relation DK2(EK1(P )) = P holds for a pair2 (K1,K2) ∈ K×K and for all
P ∈ P.

For some ciphers, there may also be an associated key schedule or key setup
algorithm that pre-processes the keys K1 and K2 before the encryption and
decryption algorithms can be applied.

Cryptosystems for which P = C are called endomorphic [105]. Due to the
decryption requirement, a cryptosystem using a fixed key performs a permuta-
tion transformation. Therefore, the relation EK1(DK2(P )) = P must also hold
for all P ∈ P and some pair (K1,K2) ∈ K ×K.

2A× B is the set of all pairs (a, b), with a ∈ A and b ∈ B, called the Cartesian product of
A and B.
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A randomized encryption algorithm selects a ciphertext at random from
C even if the same plaintext and key are repeatedly used (Rivest [198]). A
deterministic encryption algorithm produces the same ciphertext for a fixed
key and plaintext. Decryption is always deterministic: for each key, a single
plaintext is obtained.

One classification of cryptographic algorithms relies on the relationship be-
tween the encryption and decryption keys. This concept was established by
Diffie and Hellman in [67], and by Merkle in [161]. In public-key or asymmetric
cryptosystems, it must be computationally infeasible to determine the decryp-
tion key (K2) from the encryption key (K1). Thus, K1 can be made public while
K2 should be kept secret. On the other hand, in secret-key or symmetric cryp-
tosystems, K1 and K2 are either identical or can be efficiently computed from
each other. Therefore, both keys must be kept secret. Examples of public-key
cryptosystems are RSA [197], the Merkle-Hellman knapsack and elliptic curve
cryptosystems [126]. Examples of secret-key cryptosystems are DES [175], Ri-
jndael/AES [61, 185], and IDEA [135]. In this work, attention will be restricted
to endomorphic, secret-key cryptosystems.

Kerckhoffs’ assumptions [110] will be assumed in this work, for the context
in which cryptosystems are used:

• the cryptosystem should be computationally secure;

• the key should be agreed upon beforehand between the communicating
parties, and be appropriately updated according to some protocol [77];

• the cryptographic algorithm should be easy to use;

• the cryptosystem should be efficient and accurate;3

• all the details about the cryptographic algorithm, except for the key, are
known by an adversary.

Moreover, the following assumptions will also be made:

Assumption 2.1 [115] All key material is generated independently and uni-
formly at random.4

Assumption 2.2 [42] The ciphertext is always available to the adversary, since
the communication channel is assumed to be insecure.

2.1 Threat Model

Attacks can be classified according to the assumed capabilities of an adver-
sary. A typical threat model or attack model forms a hierarchy, with increasing
advantages for the adversary, as follows:

3Under strenuous situations, secrecy could be traded for prompt communication [103] which
means that messages could be transmitted in clear.

4Unless stated otherwise, such as in related-key attacks, to be described further.



10 CHAPTER 2. AN OVERVIEW OF BLOCK CIPHERS

• Ciphertext-only attack: assumes that an adversary has access to ciphertext
blocks and some statistical information about the plaintext. The objective
is to recover either the corresponding plaintext or the key. It is a passive
attack.

• Known-Plaintext attack: assumes that an adversary knows some plain-
texts/ciphertexts pairs. The objective is to find the associated key or to
recover unknown parts of the plaintext. It is a passive attack.

• Chosen-Plaintext attack: assumes that an adversary can choose the plain-
text, either partially or entirely. This added capability can be useful for
deriving key information or allowing decryption of new ciphertext. It is
an active attack. Chosen-plaintext attacks can be classified as:

– Adaptive Chosen-Plaintext: the adversary submits plaintexts based on
previously obtained ciphertexts.

– Non-Adaptive Chosen-Plaintext: the adversary submits plaintexts with-
out concern of previously obtained ciphertexts.

• Chosen-Ciphertext attack: assumes that an adversary can choose the ci-
phertext and obtain the corresponding plaintext. The objective is to re-
cover the key or to allow encryption of new plaintext. It is an active attack
that can be adaptive or non-adaptive as the chosen-plaintext type, and
can also be used in combination with the latter.

• Related-Key attack: assumes that the adversary knows or can choose some
relation between keys used for encryption or decryption, but not the key
values. This kind of attack is usually employed in combination with one of
the previous assumptions. Although such a situation may not be realistic
in many settings, a related-key attack is considered as a kind of certifi-
cational attack (Winternitz and Hellman [229]), that is, even if a cipher,
during its lifetime, might not be subject to more than a ciphertext-only
attack, its perceived strength is increased if it resists attacks that grant
more advantages to an adversary. Moreover, this attack can serve as a
measure of strength to compare the security of different ciphers.

2.2 Attack Complexity

The main parameters that are used to measure the computational effort of an
attack are:

• Data Complexity: the amount of text data obtained from queries to the
legitimate parties, under a certain threat model (known/chosen plain-
text/ciphertext).

• Memory Complexity: the amount of memory cells (in some appropriate
unit) necessary to hold all data used during an attack.
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• Time Complexity: can be divided into pre-computation complexity, that
is the amount of processing made off-line by the adversary before data
is acquired from the legitimate parties; and post-computation complexity,
that is the amount of processing required of an attacker given the required
data. Usually the larger of them is used as the time complexity.

• Success Probability: the frequency with which the attack objectives are
accomplished.

• Type of Information: the kind of information recovered (key bits, equivalent
key, plaintext fragments) and its amount (the full key, or only part of it).

Not all complexity parameters may be relevant for all types of attack. The
overall attack complexity is usually taken as the largest of the time-memory-data
complexities. For some attack contexts though, the amount of memory is not
so relevant, but a short time complexity is important. In other situations, both
memory and time are severely limited. Therefore, different attacks might better
be compared on a parameter-by-parameter basis, or dependent on the specific
application and context of the attack.

2.3 Types of Attack

Another classification of attacks on cryptosystems is based on the knowledge of
the internal details of the cryptosystem and its implementation, as follows:

• Brute-Force (or Black-Box) Attacks: are general attacks that can be ap-
plied to any cryptosystem. Their complexity depends only on general
parameters of the cryptosystems, such as the size of the key space or of
the plaintext space. An example is an exhaustive key-search attack using
software implementations or dedicated hardware [38].

• Shortcut Attacks: are based on mathematical analysis of the internal com-
ponents of a cryptosystem (following Kerckhoffs’ assumptions) and their
interaction. In this work attention will be restricted to this type of attacks.
Examples of shortcut attacks will be described further.

• Side-Channel Attacks: and other implementation-specific attacks are based
on timing of computer operations [60, 127, 129], on measuring the power
consumption on tamper-resistant devices [7, 128] or the electromagnetic
radiation emitted [3, 79, 190]. Some counter-measures to power analysis
were presented by Borst et al. in [44] and by Akkar and Giraud in [4].

• Fault Analysis: are based on systematically inducing faults in particular
hardware components used to protect or to store keys or algorithms (Bi-
ham and Shamir [28]).
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2.4 Attack Outcome

An attack may not only provide information about the key but also about
other kinds of (previously unknown) data. According to the type of information
recovered, the possible outcomes of an attack can be classified as (Knudsen
[115]):

• Total Break: an attacker finds (reconstructs) the secret key.

• Global Deduction: an attacker finds an algorithm functionally equivalent
to the original encryption/decryption ones but without knowing the secret
key.

• Instance or Local Deduction: an attacker finds the plaintext (ciphertext)
of an intercepted ciphertext (plaintext) which was not obtained from the
legitimate parties.

• Information Deduction: an attacker obtains some information about the
key, plaintext or ciphertext which did not come from the legitimate parties
and which was not known before the attack.

This classification is hierarchical, namely, a total break allows a global deduc-
tion, which enables a local deduction, which is a particular case of information
deduction.

An important concept related to the security status of a cryptosystem is:

Definition 2.1 [42] A cipher is considered theoretically broken if there exists a
shortcut attack with lower complexity than the best brute-force attack.

The following security criterion was used for ciphers submitted to the NESSIE
Project [179].

Definition 2.2 [42] A cipher is considered broken concerning the claims of the
designer if there exists an attack with lower complexity than is claimed by the
designers, at the time of the presentation of the cipher.

Concerning practical applications in which ciphers are used, the following defi-
nition is provided by Borst [42]:

Definition 2.3 A cipher is considered broken with respect to an application if
there exists an attack with lower complexity than the required minimum com-
plexity for the application.

2.5 Security Terminology

There are many approaches concerning the definition of security of a cryptosys-
tem. The following ones will be described: unconditional security, computational
security, and ad hoc security.

A cryptosystem is termed unconditionally secure if it cannot be broken.
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In [210], Shannon established a general setting for treating cryptosystems.
Each key is associated with a cryptographic transformation, as well as an a
priori probability corresponding to the likelihood of that particular key being
used. Analogously, for each plaintext there is an a priori probability that it was
encrypted. Both sets of probabilities represent the attacker’s a priori knowledge
before intercepting any ciphertext message. After the attacker receives a cipher-
text, a posteriori probabilities are computed for the plaintext and key in order
to determine which one could have being used. These probability distributions
lead to the concept of entropy:

Definition 2.4 (Entropy [210]) Let X be a random variable that can assume a
finite set of values x1, x2, . . ., xn, with probabilities Pr(X = xi) = pi, 1 ≤ i ≤ n,
and

∑n
i=1 pi = 1. The entropy of X, denoted H(X), is a measure of the amount

of uncertainty associated with its outcome before the value of X is observed.

H(X) = −
∑

pi 6=0

pi · log2 pi

Equivalently, the entropy of X measures the amount of information provided
by an observation of the variable X.

The entropy satisfies: 0 ≤ H(X) ≤ log2 n. The lower bound, H(X) = 0,
holds if and only if exactly one pi = 1 and all other pj = 0, j 6= i. Thus,
when the outcome of X is fixed, there is no uncertainty. The upper bound,
H(X) = log2 n, holds if and only if all pi are equally likely, that is, pi = n−1.
Therefore, it corresponds to the situation in which the uncertainty is maximized.

Definition 2.5 (Conditional Entropy [210]) Given random variables X and Y ,
where X can assume n values, and Y , m values, the conditional entropy of X
given Y is:

H(X|Y ) = −
n∑

i=1

m∑

j=1

Pr(X = xi, Y = yj) log2 Pr(X = xi|Y = yj) ,

where the sum is taken over all non-empty events.

The conditional entropy of X given Y is called the equivocation of Y about
X, and measures the amount of uncertainty over X after Y is observed.

A cryptographic system has perfect security if and only if knowledge of the
ciphertext does not provide any additional information about the plaintext,
that is, H(P |C) = H(P ), where P and C are random variables representing
the plaintext and ciphertext. Perfect secrecy is possible but requires that the
entropy of the key be at least the same as the plaintext entropy, that is, H(K) ≥
H(P ) (Shannon [210]).

One example of a perfectly-secure cryptosystem is the One Time Pad (OTP),
devised by Vernam in 1917 [222]. The OTP consists of a statistically random
stream of bits that is combined via an invertible operation, such as exclusive-or
with the plaintext bits. The unconditional security of the OTP relies on the
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following requirements: the key stream has the same length as the plaintext,
and the key stream is used only once, that is with one plaintext message.

The unconditional security of the OTP means that even an adversary with
unlimited computational resources cannot distinguish the actual plaintext mes-
sage from all other messages with the same length. The most evident drawback
of the OTP is the amount of key material that needs to be securely generated,
stored and communicated between the legitimate parties, prior to encryption.

The following important notion will be needed further.

Definition 2.6 (Random Cipher) A random cipher, from a domain P to a
codomain C, is an encryption algorithm uniformly chosen from the set of all
ciphers from P to C.

The uncertainty over the key, given ciphertext information, is called key
equivocation, H(K|C), and5 is related to the important notion of unicity dis-
tance.

Definition 2.7 (Unicity Distance [210]) The unicity distance (UD) of a ran-
dom cipher is defined as the minimum amount of ciphertext needed for the key
equivocation H(K|C) to become zero that is, for the key to be uniquely deter-
mined, given enough computing time.

For a random cipher the unicity distance UD ≈ H(K)
D , where D is the redun-

dancy per symbol of the original plaintext message. Therefore, if the plaintext
message has no redundancy, then UD does not approach zero, and the key will
never be found in a ciphertext-only attack [117].

The compression of a message followed by encryption may, nonetheless, re-
lease some information about the plaintext, according to Kelsey [107], if the size
of the (uncompressed) plaintext message is known and the encryption algorithm
preserves its input size.

Two methods to reduce the plaintext redundancy are: (i) chaining modes
(Sect. 2.9) and (ii) data compression, but for the latter no known perfect general
data compressor is known. Moreover, many practical compression algorithms
generate predictable output headers in order to allow (lossless) decompression.
These headers may help in known-plaintext attacks.

Because of the stringent requirements for an unconditionally secure cipher,
such as the key management issues of the OTP, many cryptosystems have
adopted more practical approaches. In most practical systems the same key is
used for encrypting many plaintext blocks. Moreover, the keys are much smaller
than the message. Consequently, these cryptosystems can at most achieve com-
putational security. A cryptosystem is termed computationally secure if the
best algorithm for breaking it requires an amount of operations larger than
all available computational resources. In the case of secret-key systems, the
computational effort might be on the order of |K|.

The concept of ad hoc security is based on heuristic arguments, such as the
unsuccessful results of previous attacks by many independent cryptanalysts over

5From Stinson [216], H(K|C) = H(K) + H(P )−H(C).
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a large time period. The notions of confusion and diffusion by Shannon [211],
to be discussed further, are two examples.

2.6 Diffusion and Confusion

In [211], Shannon suggested two concepts for the design of product ciphers:

Definition 2.8 (Diffusion and Confusion) The property of diffusion implies
that the statistical structure of the message space, which leads to its redundancy,
is dissipated into long range statistics. The property of confusion means that
the relation between the simple statistics of the ciphertext space and the simple
description of the key space is a very complex and involved one.

Diffusion is a quantitative notion in the sense that dependency on each plain-
text and key bit is to be spread to several ciphertext bits. Confusion is a more
qualitative concept in the sense that a non-linear relationship is to be expected
between all ciphertext bits and plaintext/key bits. These concepts will be fur-
ther discussed in the following.

2.6.1 The Diffusion Property

Concerning the diffusion property in block ciphers, Daemen and Rijmen [61]
defined the notion of branch number as a measure of diffusion power of invertible
cipher components.

An implicit assumption about diffusion concerns efficiency, that is, diffusion
might be achieved in as few operations as possible. The rationale for fast dif-
fusion is the high performance of these components in practical cryptosystems.
Moreover, there are cryptanalytic techniques [89, 85] that explore the slow dif-
fusion aspect of some cipher components, that is, the existence of subsets of bits
that do not fully depend on all input bits. Examples are the square and the
impossible-differential attacks (Chap. 4).

One contribution of this work is a set of guidelines [168] for efficient diffusion
in general unbalanced Feistel ciphers as defined by Schneier and Kelsey [204], in
which an input block is split into two or more sub-blocks. It will be assumed that
the round function, denoted F , accomplishes complete diffusion of plaintext and
key, namely, that every output bit depends on each input bit. The guidelines
state that complete diffusion might be achieved efficiently by an appropriate
combination of sub-block swapping and the chaining of F functions.

In a Feistel cipher, the F function is the most computationally intensive
round operation. Therefore, the effort to reach complete diffusion will be mea-
sured in terms of the number of F function computations required. If a round
function F has i input sub-blocks and generates an output that is combined to o
sub-blocks, then it will be called an (i, o)-F function. DES, for instance, uses a
(1, 1)-F function. To simplify the following analysis, it will be assumed that the
same (i, o)-F function is used in the whole cipher. A swapping scheme (SWS)
denotes a permutation of sub-blocks that is usually performed between rounds.
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Figure 2.1: Diffusion in (a) encryption and (b) decryption in a generalized Feistel
cipher.

One example is the swapping of the sub-blocks in DES. Swapping schemes can
be symmetric if the transformation is an involution, or asymmetric, otherwise.
For simplicity, it will be assumed that the same swapping scheme is used in the
whole cipher.

Swapping schemes are fixed permutations of sub-block that are applied re-
peatedly between rounds. It follows that after a certain number of rounds, all
sub-blocks will return to their original position in a block. The minimal number
of rounds needed for all input sub-blocks to return to their original position is
the period of the SWS. A cycle is a set of sub-blocks that change place only
with sub-blocks in the same set. Each cycle acts like a separate permutation
inside an SWS. Swapping schemes can be roughly divided into one-cycle and
many-cycles. One-cycle schemes on n sub-blocks have period n. Many-cycle
schemes have period LCM(p1, . . . , pi), where pj is the period of the j-th cycle.

Depending on the Feistel Network, diffusion may not be equally efficient for
encryption and decryption. An example is depicted in Fig. 2.1. It can be no-
ticed that the encryption structure in Fig. 2.1(a) achieves complete diffusion for
all output sub-blocks after three rounds and six F function instances. On the
other hand, the corresponding decryption structure in Fig. 2.1(b) achieves com-
plete diffusion after four rounds and eight F function instances. This example
suggests that an appropriate combination between F functions and sub-block
swapping can effectively improve diffusion. This effect is achieved by:
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• the use of (dn
2 e, bn

2 c)- F functions, that is, about half of all input blocks
are input to F and the other half are combined with its output;

• the chaining order of F input and output is important. The n
2 sub-blocks

combined with the output of F in a round should be the input to F in
the next round. This guarantees a chain of dependency of half of the
sub-blocks affecting exactly the other half in successive rounds;

• one-cycle SWS are preferred. Many-cycle schemes, especially cycles with
only one sub-block should be avoided because they fail to properly diffuse
sub-block dependency.

If the above conditions are met, complete diffusion can be expected in four
rounds. The reason is that if one (i, o)-F function is used per round then it
takes n

i rounds until all n sub-blocks are input to F . Similarly, it takes at least
n
o rounds until all n sub-blocks can be combined with some F outputs. Note
that i + o = n. The minimum of n

i + n
o = n

i + n
n−i occurs when i = o = n

2 . If
i < dn

2 e or o > bn
2 c then the diffusion will be delayed (or will be different for

encryption and decryption) because either too few sub-blocks will be input to
F , or too few sub-blocks will be combined with F ’s output per round.

2.6.2 The Confusion Property

The confusion property in many block ciphers such as SAFER K/SK [146, 148],
Skipjack [183], and Rijndael [61], is accomplished by substitution boxes (S-
boxes). These components are the main non-linear operators in these ciphers.
An S-box fulfills the property of confusion if each of its output bits depends
non-linearly on each of its input bits (and vice-versa, if the S-box is invertible).

Consider one particular kind of S-box construction: let g ∈ ZZ∗p be a generator
of the finite field GF(p), with p ∈ {5, 17, 257, 65537} = {22+1, 24+1, 28+1, 216+
1}. An S-box based on discrete exponentiation in any of the given finite fields
can be defined as:

S(x) =
{

gx mod p if x 6= p−1
2

0 mod (p− 1) if x = p−1
2 .

The S-box S performs a permutation for all given p. The inverse S-box is:

S−1(y) =

{
logg y mod p if y 6= 0
p−1
2 if y = 0 ,

where logg y stands for the discrete logarithm of y to the base g in GF(p).
Let the input bits to S be denoted X = (xlog2(p−1)−1, . . . , x0) and the output

bits by Y = (ylog2(p−1)−1, . . . , y0). The S-box S has the following properties:

S(x)⊕ S(x⊕ p− 1
2

) = S(x)⊕ S(x +
p− 1

2
) =

(gx ⊕ gx+ p−1
2 mod p) mod (p− 1) ≡ (gx · (1⊕ g

p−1
2 ) mod p) mod (p− 1) ≡
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(gx · (1⊕ (p− 1)) mod p) mod (p− 1) ≡ (gx · p mod p) mod (p− 1) ≡ 1.

Therefore, if only xlog2(p−1)−1 is complemented, then y0 is also complemented,
that is, y0 depends linearly on xlog2(p−1)−1.

Moreover, (S(x)⊕S(x+ p−1
2 )) div 2 = gx·p div 2 ≡ gx· p−1

2 , and consequently,
((S(x)⊕S(x+ p−1

2 )) div 2) mod 2 = gx · p−1
2 mod 2 = 0, because p−1

2 is a power
of 2. It follows that y1 does not depend on xlog2(p−1)−1.

For the particular case of p = 257 and g = 45, the discrete-exponentiation
based S-box S(x) = (45x mod 257) mod 256 is actually used in the SAFER
family of block ciphers. The consequences of this analysis are:

• the weak dependencies hold only for y0, y1 and x7, namely, the other
output bits of S are non-linearly dependent on each input bit. Likewise,
all output bits of S−1(x) depend non-linearly on each of its input bits;

• therefore, the S-boxes S, for all given finite fields, do not fulfill the con-
fusion property. In Chap. 4, this property of the S-box of SAFER will be
exploited in linear cryptanalytic attacks;

• the weak dependency of y0 and y1 over x7 was demonstrated for an arbi-
trary generator g of any of the given finite fields. It implies that even if the
S-box of SAFER would be modified by changing the generator, the above
properties would still hold. Actually, the same effect holds in mini-versions
of SAFER with 32-bit blocks (for p = 17), 16-bit blocks (for p = 5), and
in super-versions with 128-bit blocks (for p = 65537);

• all output bits of S-boxes of block ciphers such as DES (6 × 4), Skipjack
(8 × 8) and Rijndael (8 × 8) fulfill the confusion property for all input
and output bits. Thus, the weak dependency observed in the S-box of
SAFER seems to be particular to the algebraic structure of GF (p), p ∈
{5, 17, 257, 65537}.

The weak dependencies of y1 and y0 are confirmed by expressing these bits
in Algebraic Normal Form (ANF) [201]:

y1 = x1 ⊕ x2 ⊕ x0.x2 ⊕ x0.x3 ⊕ x2.x3 ⊕ x0.x4 ⊕ x1.x4 ⊕ x0.x1.x4 ⊕ x1.x2.x4 ⊕
x2.x3.x4 ⊕ x0.x2.x3.x4 ⊕ x1.x2.x3.x4 ⊕ x0.x1.x2.x3.x4 ⊕ x1.x5 ⊕ x2.x5 ⊕

x1.x2.x5 ⊕ x3.x5 ⊕ x2.x3.x5 ⊕ x4.x5 ⊕ x0.x4.x5 ⊕ x1.x4.x5 ⊕ x0.x6 ⊕
x0.x2.x4.x5 ⊕ x0.x1.x2.x4.x5 ⊕ x0.x1.x3.x4.x5 ⊕ x0.x2.x3.x4.x5 ⊕ x2.x6 ⊕

x0.x1.x6 ⊕ x0.x1.x2.x6 ⊕ x1.x3.x6 ⊕ x2.x3.x6 ⊕ x0.x2.x3.x6 ⊕
x0.x4.x6 ⊕ x2.x4.x6 ⊕ x1.x2.x4.x6 ⊕ x0.x1.x2.x4.x6 ⊕ x0.x3.x4.x6 ⊕

x1.x3.x4.x6 ⊕ x1.x2.x3.x4.x6 ⊕ x0.x1.x2.x3.x4.x6 ⊕ x0.x5.x6 ⊕
x0.x2.x5.x6 ⊕ x0.x1.x2.x5.x6 ⊕ x1.x3.x5.x6 ⊕ x0.x2.x3.x5.x6 ⊕ x4.x5.x6
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y0 = 1⊕ x1 ⊕ x0.x1 ⊕ x2 ⊕ x0.x2 ⊕ x0.x1.x2 ⊕ x3 ⊕ x0.x3 ⊕ x0.x1.x3 ⊕ x2.x3 ⊕
x0.x1.x2.x3 ⊕ x4 ⊕ x0.x4 ⊕ x0.x1.x4 ⊕ x0.x2.x4 ⊕ x0.x1.x2.x4 ⊕ x0.x3.x4 ⊕
x0.x1.x3.x4 ⊕ x0.x2.x3.x4 ⊕ x5 ⊕ x0.x5 ⊕ x1.x5 ⊕ x0.x3.x5 ⊕ x1.x4.x5 ⊕
x0.x2.x4.x5 ⊕ x3.x4.x5 ⊕ x0.x3.x4.x5 ⊕ x2.x3.x4.x5 ⊕ x0.x2.x3.x4.x5 ⊕
x1.x2.x3.x4.x5 ⊕ x0.x1.x2.x3.x4.x5 ⊕ x1.x6 ⊕ x1.x3.x6 ⊕ x0.x1.x3.x6 ⊕
x0.x4.x6 ⊕ x0.x1.x4.x6 ⊕ x2.x4.x6 ⊕ x0.x1.x2.x4.x6 ⊕ x1.x3.x4.x6 ⊕
x2.x3.x4.x6 ⊕ x0.x2.x3.x4.x6 ⊕ x0.x5.x6 ⊕ x2.x5.x6 ⊕ x1.x2.x5.x6 ⊕

x4.x6 ⊕ x0.x1.x2.x5.x6 ⊕ x0.x3.x5.x6 ⊕ x1.x3.x5.x6 ⊕ x1.x2.x3.x5.x6 ⊕
x0.x1.x2.x3.x5.x6 ⊕ x0.x4.x5.x6 ⊕ x0.x2.x4.x5.x6 ⊕ x0.x1.x2.x4.x5.x6 ⊕

x1.x3.x4.x5.x6 ⊕ x0.x2.x3.x4.x5.x6 ⊕ x7 .

2.7 Iterated Block Ciphers

Secret-key algorithms can be divided into block and stream ciphers. Block ci-
phers are primarily memoryless and time-invariant transformations, while stream
ciphers typically have memory and are time-varying transformations of the plain-
text and the key (Rueppel [201]).

Most block ciphers process plaintexts in segments of fixed size called (text)
blocks. These blocks have a length that is typically a multiple of eight bits,
although there are exceptions (Black and Rogaway [35]). Skipjack [183] is an
example of a block cipher, while the One-Time Pad (OTP) [222] is an example
of a stream cipher.

For a block cipher, P = C and the encryption transformation, for a randomly
chosen key, is often modeled as a random permutation, that is a permutation
chosen uniformly at random from the set of all permutations of the plaintext
space P. The main design criterion for a (secure) block cipher is:

Property 2.1 [42] A block cipher should be indistinguishable from a random
permutation, for every key.

In practice, for a random n-bit block cipher there are 2n! possible permu-
tations of the plaintexts, which means that the amount of key bits needed to
provide all possible permutations is log2(2n!) ≈ n · 2n. Usually the key size of
most block ciphers is not more than a small multiple of the block size. There-
fore, these block ciphers can provide only a small fraction of the total amount
of possible permutations: H(K) ¿ n · 2n. For example, for DES the key size
is k = 56 bits and the block size is n = 64 bits. Therefore, out of the ≈ 264·264

permutations of 64-bit blocks, only 256 transformations can be selected.
Every attack on a block cipher starts by distinguishing the given cipher from

a random permutation. The next step is usually a key-recovery attack if the
resulting complexity is lower than that of a brute-force attack.
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In [211], Shannon described the concept of a product cipher that combines
simple operations, which individually do not provide sufficient protection, but
jointly, result in a complex and more secure cipher. Further, in order to simplify
the implementation, many product ciphers have an iterated structure.

An iterated block cipher consists of the composition of a key-dependent and
invertible structure called a round transformation. Two kinds of round struc-
ture are most commonly found in modern iterated block ciphers: the Feistel
Network (FN) and the Substitution-Permutation Network (SPN). The round
transformation Ti of both types of iterated ciphers has the following general
form: Xi = Ti(Xi−1,Ki), where Xi−1 is the i-th round input block, Xi is the
output block, and Ki is the round subkey. The initial input, X0, is the plaintext
block, and the output after r rounds, Xr, is the ciphertext block.

Feistel ciphers have the following properties:

• typically, only half (or less) of the output block of a round is affected by
the round function;

• the F function need not be bijective in order for Ti(XR, XL) = (XR ⊕
F (XL,Ki), XL) to be invertible, because ⊕ is an involution;

• this structure has encryption-decryption symmetry, namely, both encryp-
tion and decryption can be realized using the same operations, but with
the reverse order of the subkeys;

• the structure of Feistel ciphers is usually more amenable to sequential
processing.6

The DES has the structure of a Feistel Network with 16 rounds. The i-th
round in DES, Ti, has an input text block X = (XL, XR) of two equal-sized sub-
blocks, and a round subkey Ki, such that Ti(X, Ki) = (XR, XL ⊕ F (XR, Ki)),
where F is the round function. Feistel structures have been generalized by
Schneier and Kelsey in [204] to Unbalanced Feistel Networks (UFN), in which the
number of input sub-blocks to F is different from the number of sub-blocks that
are combined with its output (See also Rijmen and Preneel [193]).

SPN ciphers have a more uniform round transformation consisting of a com-
bination of substitutions and permutations. Each sub-block of an input block to
the round is processed similarly. In a typical SPN cipher the i-th round has as in-
put the text block X = (X1, . . ., Xt), where Xi are sub-blocks of equal size, and
a round subkey Ki = (Ki,1, . . ., Ki,t), such that Ti(X,Ki) = P (S(X1 ⊕Ki,1),
. . ., S(Xt ⊕ Ki,t)), where S consists of a non-linear, invertible transformation
on each individual sub-block, and P is a permutation on the full block. SPN
ciphers have the following properties:

• typically, each sub-block in a round is affected by the round function;

• the individual round components are invertible;
6Although there are variant Feistel ciphers such as MISTY2 [156] that provides some degree

of parallelism.
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• the encryption and decryption operations typically use different opera-
tions, in addition to changing the order of subkeys;

• the structure of SPN ciphers allows more extensive parallelism during
encryption and decryption (compared to Feistel ciphers).

Rijndael/AES [61, 185] is an example of an SPN cipher.

2.8 Rijndael and AES

Rijndael is an iterated block cipher with variable block size, key size and number
of rounds [61]. The block and key sizes are at least 128 bits and can be specified
in increments of 32 bits up to 256 bits. The number of rounds depends on the
key size. Let Nb denote the block size (in 32-bit words), Nk the key size (in 32-
bit words), and Nr the number of rounds. The range for each parameter is 4 ≤
Nb ≤ 8, 4 ≤ Nk ≤ 8, and Nr = max{Nk,Nb}+6. The main difference between
Rijndael and the AES [185] is that the latter is restricted to the parameters
Nb=4, Nk ∈ {4, 6, 8} and Nr ∈ {10, 12, 14}.

The different transformations in Rijndael can be interpreted as operating on
a rectangular matrix of bytes, called the cipher state, that holds the plaintext,
intermediate data and ciphertext values during encryption and decryption. The
state matrix has four rows and Nb columns (Table 2.1). The round subkeys
are also represented in a state matrix with four rows and Nk columns. If the
input plaintext is considered as a one-dimensional array of 4 ·Nb bytes, then the
byte numbered b, 0 ≤ b ≤ 4 · Nb − 1 is mapped to the state coordinates (i, j),
where i = b mod 4, j = bb/4c, and inversely, b = i + 4 · j. A similar mapping
holds for the key (Table 2.1). Rijndael is a byte-oriented cipher. Bit strings
such as b7b6b5b4b3b2b1b0 are represented by the polynomial b7 ·x7 + b6 ·x6 + b5 ·
x5 + b4 · x4 + b3 · x3 + b2 · x2 + b1 · x + b0 in the finite field GF(28)/p(x), where
p(x) = x8 + x4 + x3 + x + 1 is an irreducible polynomial in GF(2).

A full round of Rijndael consists of the composition of four operations called
SubBytes, ShiftRows, MixColumns and AddRoundKey, in this order.
The final round consists of the operations SubBytes, ShiftRows, and Ad-
dRoundKey, respectively. One Rijndael encryption consists of an initial Ad-
dRoundKey operation followed by Nr -1 rounds, and a final round. The Sub-
Bytes operation is the only non-linear operation in the cipher. SubBytes is

Table 2.1: Example of state matrix for Nb = 4, A = (a0, . . . , a15), and for
Nb = 5, B = (b0, . . . , b19).

a0 a4 a8 a12 b0 b4 b8 b12 b16

a1 a5 a9 a13 b1 b5 b9 b13 b17

a2 a6 a10 a14 b2 b6 b10 b14 b18

a3 a7 a11 a15 b3 b7 b11 b15 b19
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Table 2.2: Left-shift offsets for ShiftRows operation.

Nb offset0 offset1 offset2 offset3
4 0 1 2 3
5 0 1 2 3
6 0 1 2 3
7 0 1 2 4
8 0 1 3 4

an invertible transformation operating on each byte of the state matrix inde-
pendently. It is performed by the application of a substitution box, which is the
composition of the inversion x−1 operation, with the exception that 0−1 = 0, in
GF(28), followed by an affine transformation. Let x = (x7, . . . , x0) denote the
input to the affine transformation, and y = (y7, . . . , y0) its output, x, y ∈ ZZ8

2.
Then, the affine transformation can be expressed by an 8 × 8 Boolean matrix
A, and an 8× 1 vector v, such that y = A · x⊕ v:




y7

y6

y5

y4

y3

y2

y1

y0




=




1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1




·




x7

x6

x5

x4

x3

x2

x1

x0




⊕




0
1
1
0
0
0
1
1




.

The inverse operation (inverse S-box) is called InvSubBytes and consists
of the composition of the inversion operation x−1 in GF(28), and the inverse
affine transformation. The latter can be expressed by:




x7

x6

x5

x4

x3

x2

x1

x0




=




0 1 0 1 0 0 1 0
0 0 1 0 1 0 0 1
1 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0
0 0 1 0 0 1 0 1
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1
1 0 1 0 0 1 0 0




·




y7

y6

y5

y4

y3

y2

y1

y0




⊕




0
0
0
0
0
1
0
1




.

The ShiftRows operation is a linear transformation in which the rows of a
state are cyclically shifted left over different offsets. The offset for the i-th row
is denoted offseti. Table 2.2 indicates the offsets for each block size. The inverse
operation, called InvShiftRows, uses cyclic right shifts by the same offsets in
Table 2.2.

The MixColumns operation considers a column of the state matrix as the
coefficients of a polynomial over GF(28)/p(x), and the columns are multiplied
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by the polynomial c(x) = 03x ·x3 +01x ·x2 +01x ·x+02x modulo (x4 +1). The
polynomial c(x) is coprime to x4 + 1. The inverse operation, InvMixColumn,
consists of column-wise multiplication by the polynomial d(x) = 0bx · x3 +
0dx · x2 + 09x · x + 0ex. For example, the result of MixColumn on the state
A = (a0, . . . , a4Nb−1) is B = C ⊗A = (b0, . . . , b4·Nb−1):




b0 . . . b4·Nb−4

b1 . . . b
4·Nb−3

b2 . . . b
4·Nb−2

b3 . . . b4·Nb−1


 =




02x 03x 01x 01x
01x 02x 03x 01x
01x 01x 02x 03x
03x 01x 01x 02x


 ·




a0 . . . a4·Nb−4

a1 . . . a
4·Nb−3

a2 . . . a
4·Nb−2

a3 . . . a4·Nb−1


 .

The AddRoundKey operation consists of a byte-wise exclusive-or combina-
tion of state and round subkey bytes. The round subkey has Nb columns.
AddRoundKey is an involution.

A decryption round in Rijndael is the composition of the inverse operations
InvSubBytes, InvShiftRows, InvMixColumns and AddRoundKey, in
this order. The final decryption round is the composition of InvSubBytes,
InvShiftRows, and AddRoundKey, respectively. The full decryption opera-
tion of Rijndael can be expressed as an AddRoundKey operation, followed by
Nr-1 decryption rounds, and a final decryption round. The key schedule of Ri-
jndael generates Nr+1 round subkeys from the 32·Nk-bit user-defined key. First
the key is expanded to (Nr+1) ·Nb bits, and each consecutive segment of 4 ·Nb
bytes of the resulting array is assigned to the round subkeys Ki, 0 ≤ i ≤ Nr.
The key expansion consists of the following algorithm, in pseudo-C code:

KeyExpansion (byte Key[4 Nk], word32 W[Nb(Nr+1)])
{

word32 tmp, i;

for (i = 0; i < Nk; i++) /* || is string concatenation */
W[i] = Key[4i] || Key[4i+1] || Key[4i+2] || Key[4i+3];

for (i = Nk; i < Nb(Nr+1); i++)
{

tmp = W[i-1];
if (i mod Nk == 0)

tmp = SubByte(ROTL(tmp)) xor Rcon[i/Nk];
else if ((Nk > 6) and (i mod Nk = 4))

tmp = SubByte(tmp);
W[i] = W[i-Nk] xor tmp;

}
}

Here SubByte is a function that consists of the parallel application of the
Rijndael S-box to each of its four input bytes. The function ROTL rotates a
32-bit word left by 8 bits. The array Rcon contains the 32-bit values (02xi−1,
00x, 00x, 00x) with 02xi−1 being evaluated in GF(28)/p(x). The encryption
subkeys can be computed on-the-fly.
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2.9 Modes of Operation

Plaintext messages are typically much longer than the n bits of a cipher block
size. Moreover, depending on the cryptographic application, the plaintext mes-
sages may need to be processed in segments or characters P = (p1, p2, . . ., pl)
of r bits, with 1 ≤ r ≤ n. The ciphertext C is processed similarly, r bits at a
time: C = (c1, c2, . . ., ct).

Modes of operations are a form of cryptographic protocol that provide con-
fidentiality of messages of size larger than n bits. No modes described in the
following provide any integrity mechanism.

Some modes of operation have no message expansion (the plaintext and
ciphertext messages have the same size: l = t), while other modes expand the
ciphertext, for example to account for padding [96] to a multiple of the cipher
block size.

The following topics will be discussed concerning modes of operation:

• PRP and PRF Families: an implicit assumption for the security of modes
of operation is that the underlying encryption algorithm can be modeled
either as a pseudo-random permutation family (each mapping is invertible)
or as a pseudo-random function family (otherwise). The notion of a finite
pseudo-random function (PRF) family was proposed by Goldreich et al.
in [84]. Such a function family is a collection of functions, each of which is
specified by a short, random key, and can be efficiently computed, given
the key. Yet, the function behaves like a random mapping, in the sense
that without knowledge of the key, a resource-bounded adversary cannot
distinguish it from a random function. Similarly, a finite pseudo-random
permutation (PRP) family is a collection of mappings, each of which is
specified by a random key, and can be efficiently computed, given the
key. Yet, the mapping behaves like a random permutation, in the sense
that without knowledge of the key, a resource-bounded adversary cannot
distinguish it from a random permutation.

• Plaintext Redundancy: is related to whether the mode allows the plain-
text statistics to propagate to the ciphertext, for instance, equal plaintext
blocks being encrypted to the same ciphertext block (Knudsen [113]).

• Random Access: means whether the mode allows an arbitrary ciphertext
block to be read or modified without the need to access or modify (update)
other blocks.

• Parallel Processing: means whether the mode allows simultaneous process-
ing of neighboring text blocks.

• Error Expansion: concerns garbled text blocks due to bit-flipping errors
(bits are complemented but there is no change in the amount of bits) or
slip errors (arbitrary insertion or deletion of bits) in the ciphertext. They
can result in: (i) no error expansion (errors limited to the same block
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or segment), (ii) finite error expansion (a limited number of blocks are
affected), or (iii) infinite error expansion.

• Counter/IV: means whether the mode requires additional values, indepen-
dent of the text and the key, for each new message or for resynchro-
nization.7 Such values can be: (i) random, (ii) unpredictable, or (iii)
non-repeating.

The following modes are described:

• The Electronic Code Book (ECB) mode has been standardized by NIST
[180] and ISO [96]. ECB consists of encrypting each individual plaintext
block independently of the other blocks. Formally:

– encryption: ci = Ek(pi), 1 ≤ i ≤ l.

– decryption: pi = Dk(ci), 1 ≤ i ≤ l.

Plaintext redundancy is not concealed in ECB mode because each block is
encrypted separately, and equal plaintext blocks, under the same key, re-
sult in equal ciphertext blocks. The ECB mode is therefore, recommended
for the encryption of data that fits in one cipher block. The underlying en-
cryption algorithm is assumed to be a PRP since the decryption operation
is needed.

Parallel processing and (legal) random access to any block are possible
due to the independent treatment of plaintext blocks. Bit-flipping errors
affect only the block in which they occur. About half of the decrypted
plaintext bits in the block is expected to be in error. Slip errors cause infi-
nite error expansion because of loss of block boundary alignment between
the encryption and decryption processes. Therefore, the ECB mode is not
self-synchronizing (refer to CFB mode further). Moreover, because of the
independent processing of each text block, an attacker can insert, delete or
change the order of ciphertext blocks without affecting decryption, unless
there is enough plaintext redundancy or some separate integrity mecha-
nism to allow detection of active tampering.

• The Cipher Block Chaining (CBC) mode has been standardized by NIST
[180] and ISO [96]. CBC consists of processing plaintext blocks combined
with a feedback of the previous ciphertext block. Formally ([180]):

– encryption: c0 = IV, (n-bit initial value),
ci = Ek(ci−1 ⊕ pi), 1 ≤ i ≤ l.

– decryption: c0 = IV, (n-bit initial value),
pi = Dk(ci)⊕ ci−1, 1 ≤ i ≤ l.

The security of the CBC mode under a chosen-plaintext attack was an-
alyzed by Bellare et al. in [10], and required that: (i) the underlying

7To reestablish coordination between encryption and decryption.
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encryption algorithm be modeled as a PRP, and (ii) the IV be randomly
chosen, and be secret for each new message and key. But CBC is not
secure under a chosen-ciphertext model. Random IV values help avoid
replay attacks, that is, replay of previous ciphertexts under the same IV.

Due to the ciphertext feedback, decryption of an arbitrary ciphertext block
(random access) requires access only to the previous ciphertext block (or
the IV ), but updating a single block requires all subsequent blocks to be
re-encrypted.

Bit-flipping errors in a ciphertext block cause the current and next plain-
text blocks to be incorrectly decrypted (finite error expansion). After two
(non-garbled) blocks are received, correct decryption resumes. Slip errors
cause loss of block boundary alignment and therefore, infinite error ex-
pansion. Integrity mechanisms, such as CBC-MAC [97], can be used but
have to be computed separately from the CBC mode.

The ISO document [96] provides two padding mechanisms to process mes-
sages whose total length is not a multiple of n bits: (i) encrypt the last b-bit
segment in OFB mode (described further), that is, combine the plaintext
using exclusive-or with the leftmost b bits of EK(Cl−1); (ii) ciphertext steal-
ing: the last two blocks are msbb(Cl−1) and Cl = EK(lsbn−b(Cl−1)||Pl).
Decryption is performed in reverse order: first process Cl and then Cl−1.

• The r-bit Cipher Feedback (CFB) mode has been standardized by NIST
[180] and ISO [96]. CFB generates a key- and data-dependent stream of
segments of r ≤ n bits that is combined via exclusive-or to the plaintext.
Formally:

– encryption: I0 = IV, (n-bit initial value),
ci = pi ⊕ leftr(EK(Ii−1)),
Ii = rightn−r(Ii−1)||ci, 1 ≤ i ≤ l,

where |pi| = r bits.

– decryption: I0 = IV, (n-bit initial value),
pi = ci ⊕ leftr(EK(Ii−1)),
Ii = rightn−r(Ii−1)||ci, 1 ≤ i ≤ l,

where |ci| = r bits.

A bit-flipping error in an r-bit cipher segment ci will affect the decryption
of the following dn

r e ciphertext segments, that is, until ci is shifted out of
Ii. Afterwards, correct decryption is resumed. The same happens in the
case of a slip error of an entire r-bit segment. But, insertion or deletion
of arbitrary s-bit segments, 0 < s < r, causes loss of segment alignment,
and therefore, infinite error expansion. Only for r = s = 1 the CFB mode
is able to recover from slip errors, a property called self-synchronization
(Maurer [158] and Heys [92]).

The efficiency of the mode is r bits encrypted per n-bit block processed.
For small r, it will require dn

r e times the number of block cipher calls
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of the full n-bit CFB or of ECB to process the same amount of data.
For example, full resilience to slip errors as discussed previously implies a
considerable decrease in performance: one full n-bit encryption is needed
to process one single plaintext bit. The use of arbitrary r-bit segments
though, avoids the need for padding, and speeds up delivery of short data
segments. The CFB mode allows a block cipher to be modeled as a stream
cipher.

Notice that only the encryption algorithm is used in CFB mode. There-
fore, Ek can be modeled as a PRF family.

Due to the feedback of ciphertext segments, the CFB processing is inher-
ently sequential. Another consequence is that random access for reading
encrypted segments requires availability of the previous dn

r e segments or
the IV, and updating a segment requires changing all the following cipher-
text segments. A third consequence of text feedback is that it conceals
plaintext redundancy. Reordering of ciphertext segments has usually the
same effect as a slip error of an entire r-bit segment. Nonetheless, specific
plaintext redundancy or a separate integrity mechanism are required to
detect segment reordering.

A non-repeating IV is required for each new message and for re-synchro-
nization. The IV is not required to be secret.

• The r-bit Output Feedback (OFB) mode has been standardized by NIST
[180] and ISO [96]. OFB generates a key stream [100] in steps of n bits, of
which r ≤ n bits can be combined to the plaintext segments via exclusive-
or. Formally:

– encryption: I0 = IV, (n-bit initial value),
Ii = EK(Ii−1), 1 ≤ i ≤ l,
ci = pi ⊕ leftr(Ii),

where |pi| = r bits.

– decryption: I0 = IV, (n-bit initial value),
Ii = EK(Ii−1), 1 ≤ i ≤ l,
pi = ci ⊕ leftr(Ii),

where |ci| = r bits.

Bit-flipping errors in OFB mode cause only the corresponding plaintext
bit to be flipped. Therefore, errors are limited to the same r-bit segment
and there is no error expansion. Moreover, this effect implies an attack in
which arbitrary plaintext bits can be changed by flipping the correspond-
ing ciphertext bits, without detection, unless there is a separate integrity
mechanism to indicate active tampering.

Slip errors of even one bit (inserted or deleted) cause infinite error expan-
sion, and require an appropriate re-synchronization protocol. This prob-
lem occurs because the Ii variable gets out of sync. The OFB mode is,
therefore, not self-synchronizing. The security of the OFB mode depends
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on the unpredictability of its key stream. Therefore, a non-repeating IV
must be used for each message and key, and for each re-synchronization
step, otherwise the very same key stream will be generated, and security
is compromised. Also, the period of the key stream must be long enough
(Gait [78]). The OFB mode with full n-bit feedback, that is, r = n is
suggested [160]. This results from the fact that the encryption function
EK , with n-bit feedback, under the assumption of a randomly chosen key,
can be modeled as a PRP family. Moreover, it was shown by Davies and
Parkin in [64] that for a random fixed key and IV, the expected cycle
length of Ii is about 2n−1. If, on the other hand, the feedback is r < n
bits then the key stream Ii is not a permutation but a PRF, with Ii having
an expected cycle length of 2n/2 [48, 64]. Concerns of short periods also
involves avoiding weak and semi-weak keys of the underlying block cipher
(Jueneman [100], and Menezes et al. [160]).

Due to the output feedback, plaintext redundancy is concealed in OFB
mode. Since the key stream is independent of the plaintext, the former can
be generated and stored prior to the encryption and decryption processes,
therefore allowing parallel processing of the plaintext and ciphertext, as
well as random access capability. If a small value for r is chosen, r-bit OFB
will require about dn

r e times the processing effort of the full n-bit OFB
to encrypt/decrypt the same amount of data. But, on the other hand, it
also restricts the amount of output key stream available to an attacker,
under a known-plaintext assumption, thus, avoiding full knowledge of the
cipher output.

Similar to the CFB mode, the OFB mode allows a block cipher to be
modeled as a stream cipher.

• The Counter (CTR) mode was originally suggested by Diffie and Hellman
[69]. More recently it was reviewed and submitted by Lipmaa et al. [142]
for the NIST Modes of Operation Workshop [163]. This mode is also rec-
ommended in a NIST Special Publication [71], and in ISO [96]. The CTR
mode consists of processing plaintext blocks with a counter-dependent
encrypted output [66]. Formally,

– encryption: I0 = IV, (n-bit initial value),
Ii = (Ii−1 + 1) mod 2n, 1 ≤ i ≤ l,
ci = EK(Ii−1)⊕ pi .

– decryption: I0 = IV, (n-bit initial value),
Ii = (Ii−1 + 1) mod 2n, 1 ≤ i ≤ l,
pi = EK(Ii−1)⊕ ci .

Security of the CTR mode, under a chosen-plaintext attack, assumes that
the underlying encryption algorithm can be modeled as a PRF family
(Bellare et al. [10]), and that the IV counter is non-repeating for each
new message and for each re-synchronization under the same key.8 The

8To avoid the same key stream to be generated from the IV value.
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IV is not required to be secret. The different counter values also help
conceal the plaintext redundancy. Notice that for an n-bit block cipher
there are at most 2n different counter values.

There is no need for padding in CTR mode. For the last block cl only the
left|cl|(EK(Il)) can be used for encryption and decryption.

In CTR mode the key stream is not data-dependent. Consequently, the
key stream can be generated and stored before encryption or decryption
starts, which speeds up the overall processing. Due to the lack of text
chaining (feedback), ciphertext blocks can be arbitrarily read or modified
(random access capability). On the other hand it also allows malicious
change of the order of blocks, which will be undetected unless a separate
integrity mechanism is provided. In case of bit-flipping errors, only the
bits in the current block are affected: there is no error expansion. In case
of slip errors, the block alignment is usually lost and the counter Ii loses
synchronization, resulting in infinite error expansion.

After the AES Development Process [2], NIST organized two workshops to
discuss new and existing modes of operation for the AES in particular, and for
block ciphers in general. In 2001, NIST issued a special publication [71] sug-
gesting the five modes described previously. Nonetheless, several other modes
were submitted for evaluation, including: the ABC (Accumulated Block Chain-
ing) by Knudsen [118], the IACBC (Integrity Aware CBC) and IAPM (Integrity
Aware Parallelizable Mode) by Jutla [102], the KFB (Key Feedback Mode) by
H̊astad and Näslund [93], the OCB (Offset Code Book) by Rogaway [200], the
PCFB (Propagating CFB) by Hellström [91], the XCBC-XOR (Extended CBC)
and XECB-XOR (Extended ECB) by Gligor and Donescu [83], and the 2DEM
(2D Encryption Mode) by Belal and Abdel-Gawad [9].

2.10 Birthday Paradox

Many cryptanalytic attacks are based on the so called birthday paradox [73]
problem. The problem consists of finding the minimum size of a group of people
such that at least two of them have a common birthday with high probability.
Assume that the birthdays of r people form a random sample of size r from the
set of all days in a year. The years are not of equal length nor are the birthrates
constant throughout the year. However, as an approximation, taking a random
sample of people is equivalent to a random sample of birthdays. Consider a year
of 365 days. The solution is found by looking at the complementary problem:
the probability that all r birthdays are different is

q =
365 · 364 · . . . · (365− r + 1)

365r
=

r−1∏

i=0

(1− i

365
) .

Therefore, the probability that at least two people have a common birthday is
1− q ≈ 0.507297 > 1

2 for r = 23 people. The apparent paradox comes from the
small number of people, which may seem counter-intuitive.
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A related problem (Meyer and Mathyas [162]) that uses the birthday paradox
is: given a set X, and a random function F : X → X, provide the minimum
size of two subsets A and B, of X, in order for a collision to occur between their
elements with a probability higher than 1

2 . A collision for F is a pair (a, b), with
a ∈ A, b ∈ B such that F (a) = F (b) and a 6= b. Consider first the probability
of no collision between A and B:

Pr(no collisions) = (1− |A|
|X| )

|B| ,

which, if |A| is much smaller than |X|, is approximately e−
|A|·|B|
|X| . Then the

probability of at least one collision is:

Pr(at least one collision) = 1− Pr(no collisions) = 1− e−
|A|·|B|
|X| .

If |A| · |B| ≈ |X|, then Pr(at least one collision) = 1− e−1 ≈ 0.63. In order
to minimize the size of the subsets, the trade-off is to set |A| = |B| =

√
|X|. A

countermeasure to attacks based on the birthday paradox is to fix |X| to a high
enough value, taking into account the square-root reduction in complexity. Due
to this minimum size of subsets to counter the birthday paradox, attacks based
on it are sometimes called square-root attacks.

One consequence of the birthday paradox is that for an n-bit block cipher,
repeated occurrences of a ciphertext block can be expected with probability
about 0.63 if more than 2n/2 + 1 random plaintexts are encrypted under the
same key (Knudsen [113]), independent of the key size. For the CBC mode, if
two ciphertext blocks match, Ci = Cj , then the corresponding inputs to the
encryption function Ek(.) are also equal, Pi ⊕ Ci−1 = Pj ⊕ Cj−1. This implies
that in a ciphertext-only attack, Ci−1 ⊕ Cj−1 = Pi ⊕ Pj , that is, plaintext
information is revealed from ciphertext data.

2.11 Key-Collision Attack

In [12], Biham described a known-plaintext attack based on the birthday para-
dox. The attack can find the key K of a block cipher in 2k/2 queries (of the same,
fixed plaintext) with complexity 2k/2, where |K| = k bits. The attack assumes
an adversary can obtain the encryption of some fixed, known plaintext block P ,
under 2k/2 randomly chosen keys. These data (EK(P ),K) are stored in a table,
indexed by the first element of the pair. Every ciphertext C ′ = EK′(P ), under
the known plaintext P , is then compared to the first entries (C, K) in the table
for some K. A match indicates that a candidate for K ′ was found, and messages
can be forged while K ′ is still in use. It is expected by the birthday paradox,
that one of the first 2k/2 received ciphertexts discloses its encryption key. If the
size of the plaintext block is smaller than |K| then additional plaintexts might
be requested in order for the attack to find a unique solution.

A trade-off algorithm can instead choose m random keys and obtain t cipher-
text blocks (under different keys, but with the same plaintext). The probability
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Table 2.3: Complexity of key-collision attack on DES.

#ciphertexts 1 28 216 224 228 232 240 248 256

complexity 256 248 240 232 228 224 216 28 1

of finding one of the t keys is:

1− (1− m

2k
)t = 1− (1− 1

2k/m
)t ≥ 1− e−

m·t
2k .

If t ·m ≥ 2k, then the probability of finding a key is at least 1− e−1 ≈ 0.63.
Table 2.3 shows an example of this attack using the DES. The conclusion is

that the theoretical strength of a cipher is bounded by the square root of the size
of the key space. The theoretical strength of a cipher is defined as the minimal
complexity t, such that given t plaintext/ciphertext pairs, possibly encrypted
under different keys, an analysis taking up to t steps can recover at least one of
the keys, with high probability.

2.12 Brute-Force Attacks

Some general attacks on cryptosystems include:
Exhaustive Key-Search Attack. This attack can work under a ciphertext-only

assumption, if the plaintext redundancy is sufficiently high, or a known-plaintext
assumption otherwise [224]. The attack consists of decrypting a given ciphertext
under each possible key until the plaintext (or its redundancy) is recognized.
The memory complexity is constant. The average time complexity for an n-bit
block cipher using a k-bit key is 2k−1 decryptions. Data complexity consists of
d k

ne known ciphertext blocks (and corresponding plaintext in a known-plaintext
attack). Countermeasures include choosing a sufficiently long key (Blaze et al.
[36]). The success probability of exhaustive key-search is proportional to the
fraction of the key space searched, that is, for an attack covering a fraction p,
0 ≤ p ≤ 1 of the key space, the probability is p that the key is found [140].

This attack can be executed in parallel on many processors, each one de-
crypting the known ciphertext(s) with a different part of the key space. There
are two approaches to this parallel search: using distributed software or using
dedicated hardware. There are many reports of this kind of attack on the DES,
specially using the latter approach, since the design of DES makes it quite effi-
cient to be implemented in hardware (Smid [214]). In [68], Diffie and Hellman
claimed that a US$ 20 million machine (in 1977 currency and technology) could
be built to attack one DES key, by depreciating the machine cost over five
years. In 1990, Garon and Outerbridge suggested the construction of a US$ 1
million machine using special-purpose chips, estimated to search a DES key in
nine days, with 1995 technology, and in 43h by the year 2000. In 1992, Eberle
suggested a 1 Gbit/s GaAs DES chip, and to use US$1 million-worth of chips,
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to exhaust half of the key space of DES in eight days. In 1993, Wiener [227]
presented the details of a known-plaintext attack using a US$ 1 million machine
to find a DES key in 3.5 h on average. In 1997, Wiener [228] updated his esti-
mates of the US$ 1 million machine to find a DES key in 3.5 min, on average.
In 1998, the Electronic Frontier Foundation (EFF) finished the construction of
an exhaustive key-search machine [76] to attack single-DES, at the approximate
cost of US$ 250,000 [23]. The attack succeeded in deriving the correct key in
about 55 h, using known plaintext.

Exhaustive key-search based on distributed software consists in partitioning
the key space into small parts and using the idle time of a series of volunteer
computers spread over the Internet to search in parallel for the unknown key.
One example of such an attack is the RSA Labs secret-key challenge [133],
consisting of several contests. In each contest a plaintext is encrypted under a
block cipher such as DES, but the plaintext and key are not disclosed. Therefore,
the exhaustive search in this case is a key- and plaintext-recovery attack. The
first challenge, DES I, was solved in 96 days by a distribute team over the
Internet. DES II-1 was solved in 40 days also by a distributed Internet team.
DES II-2 took three days, and was accomplished by the EFF cracking machine
and a volunteer team, who also won the last challenge, DES III, in 22 h.

Time-Memory Trade-Off Attack. In 1980, Hellman [90] presented a probabilis-
tic attack on DES that trades off computing time for memory storage, balanc-
ing advantages from both the exhaustive key search and the dictionary attacks,
that is, less online processing and less memory, respectively. This time-memory
trade-off (TMT) attack has a pre-computation stage that can be executed off-
line by the adversary. It is a chosen-plaintext attack.

Hellman exemplified this technique for the DES, but it also applies to other
ciphers for which |K| ≤ |P|. An attack extension to ciphers for which |K| > |P|
was provided by Kusuda and Matsumoto in [132, 131]. They derived stricter
bounds on the success probability and gave relationships between the memory
and time complexities and the success probability. In [75], Fiat and Naor pre-
sented a variant attack that is applicable to any cipher, at the cost of higher
time and memory complexities.

In [5], Amirazizi and Hellman reconsider the time-memory tradeoff attack,
arguing that it offers no asymptotic advantage over exhaustive key search and
table-lookup attacks when it is used to solve a single key search problem. In-
stead, they suggested adding multiple processors as another trade-off element,
making up a time-memory-processor trade-off attack. The main point of the
discussion was the cost of the solution versus the cost of the machine (or proces-
sors). This new approach is intended to reduce the cost per solution by solving
many search problems at once. This approach was used to attack double-DES,
using O(2(1−α)n) processors and words of memory, for 0 ≤ α ≤ 1, and a partic-
ular architecture with a number of processors sharing a large memory through a
sorting/switching network, responsible for speeding up the matching of partial
encryption/decryption values and key candidates. It was stated that in general,
using the new approach, multiple encryption with m independent keys is less
secure than an encryption scheme using a single key with the same total length
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as the m keys. A further improvement of time-memory-processor tradeoff is
reported in [189] by Qingwen and Yuanhua, by redistributing the workload of
each attack parameter m, l and t.

In [42], Borst et al. described the time-memory tradeoff attack using dis-
tinguished points. This is a variation of Hellman’s attack, and an independent
development from that of Standaert et al. in [215]. The main advantage of
Borst’s method over Hellman’s is that the former reduces the number of memory
accesses significantly. Borst’s attack was based on an idea by Rivest [66, p. 100].

Meet-in-the-Middle Attack. The Meet-in-the-Middle (MITM) attack requires
known plaintext and is an instance of the time-memory trade-off technique.
Consider a double DES encryption operation EK(.) with a pair (P1, C1) of
known plaintext/ciphertext: C1 = EK2(EK1(P1)), which uses a 112-bit key
(K1,K2) with K1 and K2 independent and uniformly distributed. This relation
can also be represented with the decryption operation DK(.) as DK2(C1) =
EK1(P1).

The attack initially creates a list of encryptions of the known plaintext P1

for all 256 possible key candidates K ′
1 for K1: U = EK′

1
(P1) and stores the pair

(U,K ′
1) in a sorted table, indexed by U . For all 256 possible values K ′

2 of K2

compute V = DK′
2
(C1) and test whether V is present as an index in the table. If

V is not present in the table then K ′
2 6= K2. Continue trying other candidates

for K2. If V is an index to some (U,K ′
1), namely U = V , then (K ′

1,K
′
2) is

a candidate for (K1,K2). For the first pair (P1, C1) the expected number of
false alarms is 256/(264/256) = 248 because there is a 2−64 chance of two 64-bit
pseudo-random strings U and V to match, and there are 256 values for K ′

1 and
256 values for K ′

2. A second plaintext/ciphertext pair reduces the false alarm
rate to 248/264 = 2−16, because only the previous 248 candidates need to be
tested. The time complexity of the attack is about 256 + 248 DES encryptions
for K1, and 256 + 248 DES decryptions for K2. The memory complexity is 256

pairs of (text,key) pairs for the sorted table, and two known (P, C) pairs. These
estimates assume a single processor is used.

Since the computation of each encryption uses a different key, this MITM at-
tack can be parallelized using a number of processors. Van Oorschot and Wiener
in [220] described a MITM attack based on a parallel collision search technique
and time-memory trade-off (to save memory). Their main advantage is a shorter
time complexity. Their attack requires two known plaintext/ciphertext pairs.
Cost estimates are US$ 10,000,000 for a hardware implementation of the attack.

Now, let C = EK3(DK2(EK1(P ))) be triple-DES in EDE mode9 with three
independent keys or 168 key bits. A meet-in-the-middle attack can be made
analogous to that on double-DES. Assume the attack looks for collisions between
DK3(C) and DK2(EK1(P )). For the first (plaintext,ciphertext) pair, (P1, C1),
each 2112 candidate key pair (K ′

1,K
′
2) suggests each of the 264 64-bit text blocks

248 times, on average. Thus, there are 256 matches between DK′
2
(EK′

1
(P1)) and

DK′
3
(C1), or 248·256 = 2104 triples (K ′

1, K
′
2,K

′
3). For a second pair (P2, C2), each

of the 2104 (K ′
1,K

′
2,K

′
3) have a chance of 2−64 to match DK′

2
(EK′

1
(P2)) against

9Encrypt, Decrypt, and Encrypt operations in this order.
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DK′
3
(C2), and it results in 2104 · 2−64 = 240 key candidates. For a third (P3, C3)

pair, each 240 (K ′
1,K

′
2,K

′
3) has a chance of 2−64 to match DK′

2
(EK′

1
(P3)) against

DK′
3
(C3), and one expects 240 ·2−64 = 2−24 false alarms. The memory complex-

ity is 256 (text,key) pairs; the data required is three distinct (P, C) pairs, and the
time complexity is 2112 +248 +240 double-DES encryptions, plus 256 +256 +240

single-DES decryptions.
Van Oorschot and Wiener in [220] presented a parallelized version of the

MITM attack on three-key triple-DES, using a parallel collision technique and
time-memory tradeoff.

2.13 Shortcut Attacks

Some modern shortcut attacks will be discussed in the next chapters, along with
applications to real block ciphers. Most of the attacks apply to reduced-round
variants of the block ciphers, but they reveal new and important interactions
between the encryption/decryption processes and the key schedule algorithms.

Some notable shortcut attacks include:

• Linear Cryptanalysis by Matsui [152, 154], and variants using multiple ap-
proximations by Kaliski and Robshaw [106];

• Differential Cryptanalysis by Biham and Shamir [24], and variant attacks
using differentials by Lai [135], higher-order differentials by Lai [134] and
truncated differentials by Knudsen [114], square attacks by Daemen et al.
[59], impossible differentials by Biham et al. [18], boomerang attacks by
Biryukov and Wagner [223], amplified boomerangs by Kelsey et al. [108],
and rectangle attacks by Biham et al. [20].

• Differential-Linear attacks by Langford and Hellman [138];

• Slide and Advanced Slide attacks by Biryukov and Wagner in [33, 34];

• Related-Key attacks by Biham [13], and Knudsen [112, 113];

• Davies’ attack by Davies and Murphy [63], and Non-Surjective attacks by
Rijmen et al. [194];

• Partitioning attacks by Harpes [86], and Kelsey et al. [109];

• χ2 attacks by Vaudenay [221], and by Knudsen and Meier [122];

• Non-Linear Cryptanalysis by Shimoyama and Kaneko [212], and Knudsen
and Robshaw [123];

• Interpolation attacks by Jakobsen and Knudsen [99].
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2.14 Conclusions

This chapter presented some basic cryptographic terminology, with emphasis on
concepts that will be explored in the following chapters.

One main contribution of this chapter concerns the confusion property of
a series of substitution boxes (S-boxes) based on the discrete exponentiation
function gx in GF(257). In particular, the SAFER block ciphers employ one
such S-box, for g = 45. Analysis of these S-boxes indicated that the property
of confusion is not completely fulfilled, since the least significant output bit
does not depend on all input bits, while the second least significant output bit
depends linearly on the most significant input bit.
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Chapter 3

Linear Cryptanalysis

3.1 Introduction

This chapter describes the linear cryptanalysis technique of Matsui on the DES
cipher, starting from local linear relations to S-boxes, up to multiple round
approximations. This technique is further applied to several SAFER ciphers
and to PES, for the particular case of weak keys.

Linear cryptanalysis (LC) is a statistical, known-plaintext attack on block
ciphers. The original ideas of linear attacks date back to the works of Shamir
in [209], Rueppel in [201], Tardy-Corfdir and Gilbert in [218], and Matsui and
Yamagishi in [157]. This technique has been more extensively developed by
Matsui in attacks on the DES cipher [152, 153, 154].

3.2 Preliminaries

An important notion in LC is that of a linear relation which is a linear expression
involving bits of the plaintext, the ciphertext and the key, holding with non-
uniform probability.

A linear relation is closely related to the notion of:

Definition 3.1 (Bitwise Dot Product) For an n-bit string X = xn−1 . . . x0, and
an n-bit mask ΓX = [i1, i2, . . . , it], their dot product is denoted X[i1, i2 . . . , it]
= X · ΓX = xi1 ⊕ xi2 . . .⊕ xit . ΓX is called a bit mask and the resulting bitwise
AND-product (or inner product) corresponds to the parity of X under ΓX.

A linear relation involving a plaintext block P , a ciphertext block C, and a
key K is denoted:

P [i1, i2, . . . , ia]⊕ C[j1, j2, . . . , jb] = K[k1, k2 . . . , kc] , (3.1)

where ΓP = [i1, i2, . . . , ia], ΓC = [j1, j2, . . . , jb] and ΓK = [k1, k2 . . . , kc] denote
fixed bit positions, and the equality holds with probability pΓP,ΓC,ΓK 6= 1

2 .

37
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To obtain linear relations covering the full cipher, or most of it, a general
approach is to start with local approximations to non-linear components in the
cipher.

In DES [175], for example, the S-boxes are the only non-linear transfor-
mations. All the remaining components, such as the data expansion E, the
permutations P , IP, and IP−1 are linear transformations. Therefore, a first
step is to determine quantitatively how close the S-boxes can be approximated
by linear (or affine) mappings. For DES, Matsui defined the following measure
of linearity for the S-boxes:

Definition 3.2 (Local S-box Approximation) For an S-box S : ZZn
2 → ZZm

2 and
fixed bit masks (α, β), such that α ∈ ZZn

2 and β ∈ ZZm
2 , let NS(α, β) be the

number of inputs x ∈ ZZn
2 for which parity under α matches the parity of Si(x)

under β. More formally,

NS(α, β) = #{x ∈ ZZn
2 |x · α = S(x) · β} (3.2)

If NS(α, β) 6= 2n−1 then there is an effective correlation between the input
bits specified by α and the output bits specified by β for the S-box S. The
farther away the value NS(α, β) is from 2n−1, the closer it is to a linear or
an affine function. For DES S-boxes, the values NSi(α, β), for 1 ≤ i ≤ 8, can
be exhaustively computed for all input and output bit masks, since n = 6 and
m = 4. These values can be organized in tables called Linear Approximation
Tables (LAT).

An exhaustive search for the most linear approximation in the LATs of all
DES S-boxes indicates that1

NS5(16, 15) = 12 (3.3)

is the highest correlated entry. Entry (3.3) means that the fourth input bit of
S-box S5 equals the parity of the exclusive-or of all four output bits in 12 out
of the 64 possible inputs, that is with probability p16,15 = 12

64 ≈ 0.19.
The absolute value εα,β = |pα,β− 1

2 | is called the (parity) bias, and measures
the deviation of the parity frequency from that of a balanced function. Since
0 ≤ pα,β ≤ 1, it follows that 0 ≤ εα,β ≤ 1

2 .
Linear relations that have empty input and output bit masks (no bits are

involved) are called trivial, and it holds that p[],[] = 1 and ε[],[] = 1
2 . In order to

simplify notation, the probability and bias will be denoted just p and ε when
the associated input and output bit masks are clear from the context.

Linear approximations that have non-zero bias are termed effective. Relation
(3.3), with bias ε = | 1264 − 1

2 | = 20
64 is the most effective non-trivial linear relation

over all DES S-boxes.
1This chapter follows the bit numbering convention of Matsui for the description of the

linear attack on DES [154], which numbers bits in right-to-left order with bit 0 in the rightmost
position. This notation differs from FIPS 46’s [175] which numbers bits in left-to-right order,
with bit 1 in the leftmost position. For example, in the IP permutation, bit bi in Matsui’s
notation corresponds to bit b(63−i) mod 64+1 in FIPS 46 and vice-versa. Similarly, for the E
transformation, bit bi in Matsui’s notation stands for bit b(47−i) mod 48+1 in FIPS 46.



3.2. PRELIMINARIES 39

Γ

Γ Γ

Γ

Γ

X

X

XX

X + ΓY

(b)(a)

YΓ

Figure 3.1: Behavior of bit masks in branching and xor.

Linear approximations to a DES S-box such as (3.3) can be extended to the
round function F , using the E data expansion and P permutation, resulting in:

X[15]⊕ F (X,K)[7, 18, 24, 29] = K[22] (3.4)

for a fixed key K and 32-bit input X.
It is possible to extend the relation (3.4) to a full round. There are two

operations involved in this extension: a two-way branching and an exclusive-
or. In a branching operation, data is simply replicated. Therefore, bit masks
are split linearly (Fig. 3.1(a)). This is justified by the fact that X · ΓX =
X · ΓY⊕X · (ΓX⊕ ΓY). In an exclusive-or operation, both input data are not
necessarily equal, but bit masks have to be identical because the same subset
of bits is being approximated (Fig. 3.1(b)). This is justified by noticing that
X · ΓX ⊕ Y · ΓX = (X ⊕ Y ) · ΓX. Relation (3.4), extended to a full round,
becomes:

Li[7, 18, 24, 29]⊕Ri[15]⊕Ri+1[7, 18, 24, 29] = Ki[22] , (3.5)

with p = 12
64 (and bias ε = 20

64 ), (Li, Ri) are the round input, (Li+1, Ri+1) are
the round output, and Ki is the round subkey.

Notice that the probability in (3.5) is due solely to the approximation of
the non-linear S-box. Therefore, in the process of extending a one-round linear
relation to multiple rounds, it seems natural to minimize the overall number of
S-boxes involved in the linear approximations. An important definition related
to the number of local approximations in the case of the DES is:

Definition 3.3 (Active (non-injective) S-box) An active (non-injective) S-box
S : ZZn

2 → ZZm
2 , n > m, is an S-box that participates in a linear approximation

and has non-zero output bit mask. Otherwise, S is called passive.

For bijective S-boxes, such as in SAFER ciphers [146], the following definition
applies:

Definition 3.4 (Active (bijective) S-box) An active (bijective) S-box S : ZZn
2 →

ZZn
2 is an S-box that participates in a linear approximation, and has non-zero

input and output bit-masks. Otherwise, S is called passive.
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The minimization of the number of approximations of non-linear components
was observed in the linear analyses of other ciphers, such as in IDEA:

Hypothesis 3.1 (Hypothesis of Minimal Optimization [89]) The optimal linear
approximations to a cipher corresponds to linear relations which minimize the
number of active approximations to the non-linear operations.

Extensions of round approximations to multiple rounds consist of the con-
catenation of single-round relations, based on matching the output bit mask of
one relation with the input bit mask of the next relation. An example is the
3-round relation resulting from the concatenation of (3.4) with the trivial one-
round relation, and another instance of (3.4): X1[15]⊕F (X1,K1)[7, 18, 24, 29] =
K1[22], X2[] ⊕ F (X2,K2)[] = K2[], and X3[15] ⊕ F (X3,K3)[7, 18, 24, 29] =
K3[22]. Since X1 = PR, X3 = CR and CL = PL ⊕ F (X1,K1) ⊕ F (X3,K3),
the exclusive-or of the three independent one-round relations result in

PR[15]⊕ CR[15]⊕ (CL ⊕ PL)[7, 18, 24, 29] = (K1 ⊕K3)[22] . (3.6)

Matsui computed the bias of multiple-round relations, such as (3.6), under the
implicit assumption that the inputs to each round function are independent and
uniformly distributed [187]. That is,

Lemma 3.1 (Piling-Up Lemma [154]) For n independent, binary random vari-
ables Γ1, . . ., Γn, with biases εΓi = |pΓi − 1

2 |, the bias of Γ = Γ1 ⊕ . . .⊕ Γn can
be approximated by ε = 2n−1 ·∏n

i=1 εΓi .

Using the Piling-up Lemma, the bias of (3.6) is ε = 22 · 20
64 · 1

2 · 20
64 ≈ 2−2.36.

One approach to linear analysis of iterated ciphers is to search for iterative
linear relations.

Definition 3.5 (Iterative Linear Relation) An iterative linear relation Γ =
(ΓP, ΓC, ΓK, ε) has the same input and output bit masks, ΓP = ΓC, namely,
it can be concatenated with itself.

A t-round iterative linear relation is quite useful because it can be extended to
any number of rounds with a fixed reduction in the bias for every t rounds (us-
ing the Piling-up lemma), making it straightforward to estimate the maximum
number of rounds for an attack.

In [152] Matsui reported on iterative linear relations for DES in which two
neighboring S-boxes were simultaneously active in the same round. Subse-
quently, in [37], Blöcher and Dichtl described experiments on these iterative
linear approximations of DES by Matsui [152], and showed that the application
of the Piling-up lemma is not justified because neighboring S-boxes actually
share some of the input bits, and the input is therefore, not independent nor
uniformly distributed. Nonetheless, Matsui’s linear relations using at most one
active S-box per round are well approximated by the Piling-up lemma.

Another hypothesis that is implicitly assumed in the construction of multiple-
round linear relations is the:
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Hypothesis 3.2 (Hypothesis of Fixed-Key Equivalence [87, 187]) The bias of
an effective linear relation is virtually independent of the key.

Relation (3.6) used the round symmetry of DES in order to facilitate the
combination of a single one-round relation and the trivial relation into a larger
one. In DES, r-round relations for r ≤ 20 with the highest reported biases are
characterized by this symmetric or palindromic structure [154], and the use of
at most one active S-box per round. It can be demonstrated that due to the
structure of the DES cipher, at most one trivial relation can be interleaved be-
tween non-trivial ones for the construction of multiple-round relations (Knudsen
[113]). In the case of n-round Feistel ciphers, such as DES, Matsui [155] pre-
sented an algorithm, based on branch-and-bound techniques, to search for the
best (with highest bias) r-round linear relation, for 3 ≤ r ≤ 20. The algorithm
consists of an heuristic search in a graph, where nodes are represented by bit-
masks (ΓX), and edges by non-zero bias values (ε). An edge ε links bit-masks
ΓX to ΓY if the input to a round, masked by ΓX, is correlated to the round
output, masked by ΓY, with bias ε. The algorithm requires under-estimations
for the bias of the best i-round linear relations, for 1 ≤ i ≤ r, in order to find
the best r-round relation. The more precise the estimations are, the faster the
processing of the algorithm.

A (highly-biased) r-round linear relation for DES allows one to distinguish
it from a random permutation. If the amount of key bits involved in the lin-
ear relation is sufficiently small, a key-recovery attack is also possible. In this
respect, an important terminology for linear attacks is:

Definition 3.6 (tR Linear Attack) A tR linear attack on an n-round cipher is
an attack that recovers round subkey bits using an (n− t)-round linear relation.

A 0R linear attack on 3-round DES, using relation (3.6) can be used to
recover one effective key bit, (K1 ⊕K3)[22], using a maximum-likelihood tech-
nique:

Algorithm 3.1 (0R Linear Attack [154]) Given N known plaintext/ciphertext
pairs (Pi, Ci), let T denote the number of pairs that satisfy P ·ΓP⊕C ·ΓC = 0,
a linear relation with probability p. If T > N

2 then output K ·ΓK = 0 (if p > 1
2),

or K ·ΓK = 1 (if p < 1
2), otherwise, output K ·ΓK = 1 (if p > 1

2) or K ·ΓK = 0
(if p < 1

2).

Algorithm 3.1 recovers one bit of key information: K · ΓK. The success
probability of Algorithm 3.1 is given by:

Lemma 3.2 (Success Probability of 0R Attack [154]) Let N be the number of
known plaintext blocks, and p the probability that relation (3.1) holds. Moreover,
assuming that |p− 1

2 | is sufficiently small, the success probability of Algorithm 3.1
is: ∫ ∞

−2
√

N |p− 1
2 |

e−x2

√
2π

dx . (3.7)
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Table 3.1: Numerical estimation of success probability of 0R linear attack.

N 1
4 |p− 1

2 |−2 1
2 |p− 1

2 |−2 |p− 1
2 |−2 2|p− 1

2 |−2

Success Prob. 84.1% 92.% 97.7% 99.8%

A numerical calculation of (3.7), for increasing values of N , is listed in Table 3.1.
The amount of known plaintext/ciphertext needed for a successful linear attack
is proportional to ε−2 = (p− 1

2 )−2.
A more efficient linear attack on n-round DES is the 1R attack. The idea

is to guess subkey bits of either the first or the last rounds by encrypting or
decrypting one single round, and therefore, fit the reduced-round cipher into an
(n − 1)-round linear approximation. A 1R attack on n-round DES to recover
subkey bits of the last round has the form:

P · ΓP⊕ CR · ΓCL ⊕ (CL ⊕ F (CR,Kn)) · ΓCR = K · ΓK . (3.8)

The following assumption is made to justify the maximum likelihood algo-
rithm that distinguishes the correct key using a linear approximation:

Hypothesis 3.3 (Hypothesis of Wrong-Key Randomization [87]) For any lin-
ear relation L, operating on n rounds of a cipher, for which |Pr(L = 0|K1 =
k1,K2 = k2, . . . , Kn = kn)− 1

2 | is large for virtually all values k1, . . . , kn of the
round subkeys, the following is true: for virtually all possible round subkeys (k1,
. . ., kn), and for all estimates Kn of the last round subkey:

|Pr(L = 0|Kn = kr)− 1
2 |

|Pr(L = 0|Kn = kw)− 1
2 |
À 1 , ∀kw 6= kr ,

where2 kr is the right subkey, and kw stands for the wrong subkey candidates.

Intuitively, the 1R linear attack that uses the correct last round subkey
effectively decrypts that round correctly and evaluates the linear relation at
n − 1 rounds with the expected probability of (3.8). On the other hand, all
incorrect round subkeys will not decrypt that round, but will have the effect of
adding one more round, leading to an (n + 1)-round cipher, which has a more
uniform probability (closer to 1

2 ), and a less detectable bias.
The following attack algorithm uses relation (3.8) to recover subkey bits of

the last round:

Algorithm 3.2 (1R Linear Attack [154]) Given N known plaintext/ciphertext
pairs (Pi, Ci), let Ti be the number of pairs such that P ·ΓP⊕CR ·ΓCL⊕ (CL⊕
F (CR,Ki

n)) · ΓCR = 0, for the key candidate Ki
n. Let Tmax and Tmin be the

maximal and minimal values among all the Ti values. If |Tmax−N
2 | > |Tmin−N

2 |
then adopt the key candidate corresponding to Tmax and estimate K · ΓK = 0

2The notation x À y means, in this case, that x is much larger than y.
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when p > 1
2 , or K ·ΓK = 1 when p < 1

2 . If |Tmax− N
2 | < |Tmin− N

2 | then adopt
the key candidate corresponding to Tmin and estimate K · ΓK = 1 when p > 1

2 ,
or K · ΓK = 0 when p < 1

2 .

3.3 Linear Attack on DES

The first known-plaintext attack on the full 16-round DES, reported by Matsui
in [154], was a 1R attack. The following 15-round linear relation with probability
p = 1/2 + 1.19 · 2−22 and eleven active S-boxes was used to recover subkey bits
K16[42], . . . , K16[47], which are input to S-box S1 in the 16-th round (Fig. 3.2):

PL[7, 18, 24]⊕ PR[12, 16]⊕ CR[7, 18, 24, 29]⊕ (CL ⊕ F (CR, K16))[15] =
K1[19, 23]⊕ (K3 ⊕K5 ⊕K7 ⊕K9 ⊕K11 ⊕K13 ⊕K15)[22]⊕

(K4 ⊕K8 ⊕K12)[44] , (3.9)

besides the single key bit on the right-hand side of (3.9).
Due to the symmetric DES structure for encryption and decryption, a dual

linear relation to (3.9) can be obtained by changing the roles of P = (PL, PR)
and C = (CL, CR):

CL[7, 18, 24]⊕ CR[12, 16]⊕ PR[7, 18, 24, 29]⊕ (PL ⊕ F (PR,K1))[15] =
K16[19, 23]⊕ (K14 ⊕K12 ⊕K10 ⊕K8 ⊕K6 ⊕K4 ⊕K2)[22]⊕

(K13 ⊕K9 ⊕K5)[44] . (3.10)

Relation (3.10) can be used to recover subkey bits K1[42], . . ., K1[47] and the
single key bit on the right-hand side of this relation. Both relations (3.9) and
(3.10) require on the order of 8·(1.19·2−22)−2 ≈ 247 known plaintexts to recover
14 key bits with 96% success probability [154].

In [153], Matsui presented an improved 2R linear attack on 16-round DES,
using a 14-round linear relation with probability 1

2 − 1.19 · 2−21, and ten active
S-boxes, covering rounds 2 till 15:

R2[7, 18, 24]⊕ L15[7, 18, 24, 29]⊕R15[15] = K2[22]⊕K3[44]⊕K4[22]⊕
K6[22]⊕K7[44]⊕K8[22]⊕K10[22]⊕K11[44]⊕K12[22]⊕K14[22] .(3.11)

Due to the symmetric Feistel structure of DES, a dual 14-round relation to
(3.11) can be obtained by changing the roles of (L2, R2) and (R15, L15):

R15[7, 18, 24]⊕ L1[7, 18, 24, 29]⊕R1[15] = K15[22]⊕K14[44]⊕K13[22]⊕
K11[22]⊕K10[44]⊕K9[22]⊕K7[22]⊕K6[44]⊕K5[22]⊕K3[22] . (3.12)

Relation (3.11) can provide 13 key bits: K1[18], . . ., K1[23] (input to S5),
K16[42], . . ., K16[47] (input to S1), and the one bit of key information from
the right-hand side of the relation:

(PL ⊕ F (PR,K1))[7, 18, 24]⊕ CR[7, 18, 24, 29]⊕ (CL ⊕ F (CR,K16))[15] =
K3[22]⊕K4[44]⊕K5[22]⊕K7[22]⊕K8[44]⊕K9[22]⊕

K11[22]⊕K12[44]⊕K13[22]⊕K15[22] . (3.13)
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Figure 3.2: 1R Linear attack on DES using 15-round relation.
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Analogously, relation (3.12) can provide 13 additional key bits: K1[42], . . .,
K1[47], K16[18], . . ., K16[23] and one bit of key information from the right-hand
side of the relation:

(CL ⊕ F (CR,K16))[7, 18, 24]⊕ (PL ⊕ F (PR,K1))[15]⊕ PR[7, 18, 24, 29] =
K14[22]⊕K13[44]⊕K12[22]⊕K10[22]⊕K9[44]⊕K8[22]⊕

K6[22]⊕K5[22]⊕K4[22]⊕K2[22] . (3.14)

Effective text bits and effective key bits are defined as the text and key bits
of information needed to uniquely evaluate the value of a linear relation such
as (3.13) and (3.14). For example, to compute PL[7, 18, 24]⊕CR[7, 18, 24, 29]⊕
CL[15], eight text bits are needed, but the expression contributes only a sin-
gle (effective) bit of information to the parity of the linear relation. On the
other hand, to determine the single bit F (PL,K1)[7], six (effective) text bits
(PL[11], . . . , PL[16]) and six key bits (K1[18], . . ., K1[23]) are needed. This
observation shows that in order to uniquely determine the parity of the left-
hand side of relation (3.13), 12 effective key bits and 13 effective text bits are
involved. The algorithm for attacking the full 16-round DES, uses relations
(3.13) and (3.14) simultaneously, and has two parts:

Algorithm 3.3 (2R Linear Attack of 16-round DES (Part 1)

• (Data Counting Phase)

(1) initialize 213 counters TAi to zero, 0 ≤ i < 213, where the index i
represents each possible 13 effective text bits of relation (3.13).

(2) from each of the N known plaintext/ciphertext pairs (P, C), extract
the effective text bits, forming an index i, and increment TAi by one.

• (Key Counting Phase)

(3) initialize 212 counters KAj to zero, 0 ≤ j < 212, where j corresponds
to each possible value of the 12 effective key bits of relation (3.13).

(4) for each value j of step (3), set KAj to be the sum of the TAi such that
the left-hand side of (3.13), whose value can be uniquely determined
from i and j, is equal to zero.

(5) sort KAj in decreasing order of |KAj − N
2 | and rename them KAla ,

0 ≤ la < 212. For each KAla , if KAla ≤ N
2 , then estimate the

right-hand side of (3.13) as 0; otherwise, estimate it as 1.

The same algorithm is applied to relation (3.14), resulting in counters TBi,
KBj , and KBlb (a total of 213 + 212 counters). After step (5), the most likely
key candidates KAla and KBlb are ranked according to the highest deviation
from N

2 . The next step consists in making a joint ranking of (KAla ,KBlb), and
at the same time, searching over the remaining 56-26=30 key bits.

Algorithm 3.4 (2R Linear Attack of 16-round DES (Part 2))



46 CHAPTER 3. LINEAR CRYPTANALYSIS

F

F

F

F

F

F

F

P

F

2

F

3

F

F

F

F

F

P
P

FF

1 9

10

11

12

13

14

15

16

C C

C

K

K

K

K4

K5

K6

K7

K8 K

K

K

K

K

K

K

K

L R

RL

[7,18,24]

[7,18,24,29]

[15]

[ ]

[7,18,24,29]

[7,18,24,29]

[ ]

[15]

[7,18,24,29]

[7,18,24]

[ ]

[ ]

[15][7,18,24]

[15] [29]

[ ]

[22]

[44]

[7,18,24,29] [15]

[22]

[ ]

[ ] [ ]

[7,18,24,29] [15]

[22]

[ ]

[ ]

[15][7,18,24]

[15] [29]

[ ]

[22]

[44]

[7,18,24,29] [15]

[22]

[ ]

[ ] [ ]

[7,18,24,29] [15]

[22]

[44]

[29][15]

[7,18,24]

[22]

[15]

[15]

[ ]

[7,18,24,29]

[15]

[ ]

[7,18,24,29]

[7,18,24]

[7,18,24,29]

[15]

[ ]

[7,18,24]

[7,18,24]

[15]

[ ]

[7,18,24]

[7,18,24]

p = 30/64

p = 12/64

p = 1

p = 12/64

p = 30/64

p = 42/64

p = 1

p = 42/64

p = 1

p = 42/64

p = 30/64

p = 12/64

p = 1

p = 12/64

[15]

[ ]

Figure 3.3: 2R Linear attack on DES using 14-round relation.



3.3. LINEAR ATTACK ON DES 47

• (Key Ranking and Searching)

(6) rank the pairs (KAla ,KBlb), 0 ≤ la < 212, 0 ≤ lb < 212 in increasing
order of (la + 1) · (lb + 1).

Key Pair KAla

Ranking KA0 KA1 KA2 KA3 . . .

KB0 1st 2nd 3rd 4th . . .
KB1 2nd 4th 6th 8th . . .

KBlb KB2 3rd 6th 9th 12th . . .
KB3 4th 8th 12th 16th . . .
. . . . . . . . . . . . . . . . . .

(7) for each candidate pair (KAla ,KBlb), search exhaustively for the re-
maining 30 key bits, until the full 56 key bits are found.

The complexity of the 2R attack on DES is:

• steps (1) and (2) have time complexity N as it analyzed N = (1.19 ·
2−21)−2 ≈ 243 known plaintexts.

• steps (3) and (4) have time complexity 212+13 and memory complexity
212 + 212 for the key counters.

• step (5) has time complexity 12 ·212 ·2 for sorting two key-counter vectors,
each with 212 elements.

• steps (6) and (7), when restricted to the 213 most probable key candidates,
have a time complexity of 213+30, and results in 86% success rate to find
the full 56-bit DES key.

In [101], Junod reported on the results of an independent implementation
of the 2R linear attack of Matsui on 16-round DES. Through a series of 21
repetitions of the attack, Junod reported a lower complexity than that estimated
by Matsui: given 243 known plaintexts, the complexity was upper bounded by
241 DES evaluations with a success probability of 85%, instead of the estimated
243 evaluations. This may indicate that the success probability estimate given
by Matsui is pessimistic, which was also predicted by Nyberg in [187].

In [187] Nyberg generalized the concept of linear relations by introducing
the notion of linear hulls. Informally, a linear hull corresponds to an ensemble
of linear relations with fixed ΓP and ΓC masks, but with all possible values of
ΓK that lead to non-zero bias.

This notion, though, can be complemented by an observation by Biham
in [14]. Biham discusses Matsui’s technique, and compares it to differential
cryptanalysis and Davies’ attack [63]. One important observation by Biham
is that “... if two linear relations with the same input and output bit masks
and similar probability exist, then they might cancel the effect of each other if
the parity of the subset of key bits is not the same, or if their probabilities are
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the complement of each other and the parity of the subset of their key bits is
the same”. It implies that special care has to be taken in the construction of
multiple-round linear relations in order to guarantee that the resulting linear
relation (or linear hull) has effectively non-zero bias.

The framework set by Matsui in his analysis of DES was used to attack many
other ciphers, such as FEAL-8 in [6], SAFER K-64 in [87], s2DES and s3DES
in [139] and NUSH in [226].

In [121], Knudsen and Mathiassen described an implementation of Matsui’s
linear cryptanalysis on 8-, 12- and 16-round DES, but using chosen plaintexts.
The assumption of chosen plaintexts allows the attacker to fix the inputs to
some S-boxes at the input to the linear relation and guarantee a fixed parity
with probability one. This strategy allows the attackers to bypass the first few
rounds in a linear attack without decreasing the bias. The authors report an
attack on 16-round DES that recovers 12 key bits using 242 chosen plaintexts,
with 86% success probability. To recover 12 more key bits, the number of chosen
plaintext has to be doubled and the success probability squared.

3.4 Linear Cryptanalysis of SAFER Ciphers

This section describes linear cryptanalytic attacks on reduced-round variants of
SAFER-32, SAFER SK-64, SAFER+, and SAFER++ ciphers. A description
of all SAFER ciphers and key schedule algorithms can be found in Appendix C.
The contributions of this section are based on [169, 170].

In [87], Harpes reported on a linear analysis of SAFER K-64, using a 1.5-
round homomorphic linear relation, which can be used in a key-recovery attack
on 2-round SAFER K-64. A homomorphism is defined as follows:

Definition 3.7 (Homomorphism) Let (G1,⊗) and (G2, ¡) denote groups, and
M a mapping from G1 into G2. M is called a homomorphism if

M(x⊗ y) = M(x) ¡ M(y), ∀x, y ∈ G1.

A round in a SAFER cipher can be split into four layers in this order: an
Add/Xor (A/X) key mixing, an S-box or non-linear (NL) layer, an Xor/Add
(X/A) key mixing, and a PHT layer. Thus, approximations can be made layer
by layer.

The notation Γ = (ΓX, ΓM,ΓY, ε) denotes a one-round linear relation X ·
ΓX ⊕ R(X) · ΓY = K · ΓK, with non-zero bias ε, where X is the round input,
R(X) is the round output, K is the round subkey, ΓX is the input bit mask, ΓM
is the bit mask between the NL layer and the A/X layer, and ΓY the output
bit mask.

For either a PHT, key mixing or NL layer, the linear relation will be denoted
by Γ = (ΓX, ΓY, ε), where, similarly ΓX is the input bit mask, and ΓY the output
bit mask to the layer.

An extended terminology for linear attacks on SAFER ciphers is:
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Definition 3.8 (Fractional Linear Attack) A fractional linear attack on n-
round SAFER ciphers is an attack that recovers round subkey bits using an
(n − t)-round linear relation, where t can include a key mixing, a PHT or an
NL layer, each corresponding to a 0.25 fraction of a round.

Harpes et al. reported in [87] that SAFER K-64 is immune to a gener-
alization of linear cryptanalysis [88] which involves only homomorphic linear
relations, after 1.5 rounds. Namely, the best homomorphic linear relation is
stated as the following concatenation of X/A + NL + A/X + PHT + X/A +
NL layers:

(000000zz000000zzx, 0000000100000001x, 2 · ( 28
256 )2) X/A+NL

(0000000100000001x, 0001000000000000x, 2−1) A/X+PHT
(0001000000000000x, 00zz000000000000x, 28

256 ) X/A+NL , (3.15)

where zz ∈ {cdx, ffx}, and the overall bias (using the Piling-Up Lemma) is
ε = 22 · ( 28

256 )3 ≈ 2−7.58. Homomorphic linear relations use bit masks that
take into account the group operations used to mix subkeys in each round. For
the groups G1 = (ZZ256, ¢) and G2 = (ZZ8

2,⊕) the only homomorphic masking
function is M(y) = y · ΓY = y · 01x, that is, the mask consisting of the least
significant bit (LSB).

Notice that homomorphic linear relations cannot reach more than 1.75 rounds
in any SAFER cipher, because there are no linear approximations to either of
the two S-boxes of SAFER using input and output bit masks 01x with non-
zero bias, that is, the least significant input bit is not correlated to the least
significant output bit of either S-box. The following sections will show that non-
homomorphic linear relations can reach more rounds of many SAFER ciphers
by assuming some subkey-bit restrictions [169].

3.4.1 Non-Homomorphic Linear Relations

Let M(y) = y · 02x be a masking function and K be a subkey byte. The M
mapping is non-homomorphic with respect to modular addition:

M(y ¢ K) = (y ¢ K) · 02x 6= M(y)⊕M(K) = y · 02x ⊕K · 02x ,

because of a possible carry bit that can propagate from the LSB to the second
LSB. Assuming that the intermediate data values in a round and the subkeys
are uniformly distributed, this carry bit occurs with probability 1/4, that is,
with a bias of 2−2.

A preliminary linear analysis of SAFER K/SK ciphers indicated the follow-
ing one-round iterative non-homomorphic linear relation:3

(20022202x, 20022202x, 20022202x, 2−24)
3In this particular case, to simplify notation, and because only the two LSBs of each byte

are used in linear approximations of all the SAFER ciphers, the bit masks will be denoted by
one single digit per byte: 0, 1, 2 or 3.
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for which the bias due to the NL layer is 2−21 (five active S-boxes), while the
bias due to the PHT layer is 2−4. Moreover, there are restrictions on some
bits for the additive key words: their LSBs are assumed to be zero. Since the
bias was too low, it was decided to search for non-iterative, non-homomorphic
linear relations, instead. One important search criterion is to limit the number
of active S-boxes (Hypothesis 3.1), in order to control the overall bias of the
final linear relation. Moreover, limiting the Hamming Weight of the input and
output bit masks of the final linear relation is also important, since it limits the
number of subkey bytes that need to be recovered simultaneously.

The use of non-homomorphic bit masks implies restrictions on some key bits:

(1) let X = (x7, . . . , x0), S = (s7, . . . , s0), K = (k7, . . . , k0) ∈ ZZ8
2 be the input,

the output and the subkey bytes in an addition operation: S = X¢K. An
example of a non-homomorphic approximation for the addition operation,
using the bit mask ΓX = 2, takes the form S · 2 = X · 2 ⊕K · 2 and has
bias ε = 2−2, due to a possible carry bit into the second LSB. This carry
bit can be avoided if either x0 = 0, or k0 = 0.

(2) if the carry bit is avoided for the non-homomorphic bit mask in item
(1), then there is no reduction in the bias. The restricted validity of the
linear approximation to keys that possess a certain bit pattern is only
apparent. By specifying bit masks for each key class according to the
different approximations of the LSB in the modular addition, all keys in
each partition of the key space can be attacked. For the bit masks that
exploit only the two LSBs of the key, there are the following possibilities:

(a) for the linear approximation S · 2 = X · 2 ⊕ K · ΓK, since the real
relation is x1 ⊕ k1 ⊕ x0 · k0 = x1 ⊕K · ΓK, the weak-key restriction
is k0 = 0, which results in ΓK = 2.

(b) for the linear approximation S · 2 = X · 3 ⊕ K · ΓK, since the real
relation is x1⊕k1⊕x0 ·k0 = x1⊕x0⊕K ·ΓK, the weak-key restriction
is k0 = 1, which results in ΓK = 2.

(c) for the linear approximation S · 3 = X · 2 ⊕ K · ΓK, since the real
relation is x1 ⊕ k1 ⊕ x0 · k0 ⊕ x0 ⊕ k0 = x1 ⊕K · ΓK, the weak-key
restriction is k0 = 1, which results in ΓK = 3.

(d) for the linear approximation S · 3 = X · 3 ⊕ K · ΓK, since the real
relation is x1⊕k1⊕x0 ·k0⊕x0⊕k0 = x1⊕x0⊕K ·ΓK, the weak-key
restriction is k0 = 0, which results in ΓK = 3.

Therefore, each bit mask imposes a different constraint on the key bits,
but all possibilities are included. For the bit masks in (a) and (d) the
restriction is k0 = 0, while for (b) and (c), k0 = 1. Although, the bit
masks in the linear relations in the following sections apply to specific
key bit patterns, they can be easily adapted to cover each key in another
partition of the key space.
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(3) the non-homomorphic linear relations are key dependent, and it is reflected
in the final bias of the linear approximations. This approach is used to
cover more rounds of SAFER ciphers. Notice that Harpes’ relation (3.15)
is homomorphic and key independent.

The linear relations described in the next sections were found by: (i) mount-
ing a database of one-round relations covering up to the two LSBs per byte, and
(ii) combining them according to the following criteria:

• minimize the number of active S-boxes;

• maximize the number of rounds approximated;

• minimize the number of weak-key restrictions;

• minimize the number of subkey bits to recover simultaneously.

3.4.2 Linear Attack on SAFER-32

A preliminary linear analysis of SAFER ciphers will start with a mini-cipher
version called SAFER-32. Some block ciphers allow all of their individual com-
ponents to be reduced to a fraction of the original size, while the security level
relative to the block size scales down proportionally. This is the case with
SAFER-32, a 32-bit block mini-cipher with a 64-bit key, a scaled down ver-
sion of the 64-bit block SAFER SK-128. The S-boxes of SAFER-32 are defined
as Xg(a) = (ga mod 17) mod 16 and Lg(a) = logg a mod 17, for a 6= 0, and
Lg(0) = 8. There are eight degrees of freedom for g such that GF(17)= < g >,
namely, g ∈ {3, 5, 6, 7, 10, 11, 12, 14}. The number of rounds is set to r = 8,
and the key schedule is assumed to be similar to that of SAFER SK-128, with
(2r + 1) 32-bit round subkeys. The value g = 3 was chosen since it results in
similar linear approximations as the generator 45 used in the original SAFER
ciphers. Some reasons to consider mini-cipher versions are:

• the reduced dimensions allow a more comprehensive analysis to be carried
out, including attack simulations, which are not always possible in the
original cipher;

• weaknesses found in the mini-version may be extended to the larger ci-
pher, or may provide some insight into potential weaknesses in the original
cipher.

Analogous to the DES, there are LATs for the S-boxes of SAFER-32. The
relevant linear approximations, with non-zero bias, for the X3 S-box of SAFER-
32 are: (ΓX, ΓY) = (1, 2), and (ΓX, ΓY) = (2, 2), both with ε = 2−2, where ΓX
and ΓY are the S-box input and output bit masks.
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The following is a 4.75-round linear relation for SAFER-32, involving nine
active S-boxes:

( 12121212x, 00000200x, 2−3) A/X+PHT
(00000200x, 00000100x, 10001000x, 2−2) one round
(10001000x, 20002000x, 02020302x, 2−5) one round
(02020302x, 01020102x, 02010000x, 2−6) one round
(02010000x, 01020000x, 22110000x, 2−4) one round

( 22110000x, 22110000x, 2−1) X/A , (3.16)

with bias ε4 = 2−16, provided that the following key bit restrictions hold:

lsb1(K4
2 ,K8

2 , K6
3 ,K1

6 ,K5
6 ,K2

7 ,K4
8 , K8

8 ,K2
9 ,K4

10,K
2
11) = 0 , (3.17)

lsb1(K6
7 ) = 1 ,

where the notation lsb1(·, . . . , ·) = v means that the least significant bit of each
argument has value v. Using a key schedule similar to that of SAFER SK-128,
(3.17) imply restrictions on 12 user-defined key bits, which means that one in
212 keys is susceptible (weak) to a linear attack.

Relation (3.16) can be used in a 0.5R attack on 5.25-round SAFER-32, under
weak-key assumptions (3.17), as follows:

(a) Let Pi, 1 ≤ i ≤ 8 denote the plaintext 4-bit words, and Cj , 1 ≤ j ≤ 8 be
the ciphertext words after 5.25 rounds. The linear relation for the attack
has the form:

X3(P1 ⊕K1
1 ) · 1⊕ L3(P2 ¢ K2

1 ) · 2⊕ L3(P3 ¢ K3
1 ) · 1 ⊕

X3(P4 ⊕K4
1 ) · 2⊕X3(P5 ⊕K5

1 ) · 1⊕ L3(P6 ¢ K6
1 ) · 2 ⊕

L3(P7 ¢ K7
1 ) · 1⊕X3(P8 ⊕K8

1 ) · 2⊕ (C1 ⊕ C2) · 2 ⊕
(C3 ⊕ C4) · 1 = Ki · ΓKi , (3.18)

where ¯ denotes subtraction in ZZ16.

(b) The Ki · ΓKi bit is: (K1
2 ⊕K3

2 ⊕K5
2 ⊕K7

2 ⊕K6
4 ⊕K1

5 ⊕K5
5 ⊕K2

8 ⊕K6
8 ⊕

K4
9 ⊕K2

10 ⊕K3
11 ⊕K4

11) · 1 ⊕ (K2
2 ⊕K4

2 ⊕K6
2 ⊕K8

2 ⊕K6
3 ⊕K1

6 ⊕K5
6 ⊕

K2
7 ⊕K4

7 ⊕K6
7 ⊕K8

7 ⊕K4
8 ⊕K8

8 ⊕K2
9 ⊕K4

10 ⊕K1
11 ⊕K2

11) · 2.

(c) The number of subkey bits in (3.18) is 32: K1
1 , K2

1 , K3
1 , K4

1 , K5
1 , K6

1 , K7
1 ,

K8
1 . But, recalling Chap. 2, Sect. 2.6.2, the least significant output bit of

the X3 S-box depends linearly on its most significant input bit (MSB), and
the second least significant output bit does not depend on the MSB of the
X3 S-box input. It implies that the MSB of K1

1 , K4
1 , K5

1 , and K8
1 cannot

be identified, and the number of recoverable key bits becomes 32−4 = 28.

The amount of known plaintext needed is estimated as N = (2−16)−2 = 232 (the
complete codebook). The time complexity is equivalent to evaluating (3.18) for
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the 28 unknown key bits, and the known plaintext/ciphertext pairs: 232+28 =
260 half-round computations. It corresponds to about 1

10 · 260 ≈ 257 5.25-round
SAFER-32 computations. The memory complexity corresponds to N = 232

plaintext/ciphertext blocks. The remaining 64-28=36 key bits can be recovered
by exhaustive search.

3.4.3 Linear Attack on SAFER SK

For SAFER-SK ciphers, the following 3.75-round linear relation, with eight
active S-boxes, was found (Fig. 3.4):

( 00000100x, 10001000x, 2−4) A/X+PHT
(10001000x, 20002000x, 02020203x, 2−9) one round
(02020203x, 01020102x, 02010000x, 2−16) one round
(02010000x, 01020000x, 32110000x, 2−8) one round

( 32110000x, 32110000x, 2−1) X/A , (3.19)

with bias ε = 2−31, provided that the following key bit restrictions hold:

lsb1(K1
4 ,K5

4 , K2
5 ,K6

5 ,K4
6 ,K8

6 ,K2
7 , K4

8 ,K2
9 ) = 0 . (3.20)

The user-defined keys that satisfy restrictions (3.20) are called weak with
respect to linear relation (3.19). The nine key bits in (3.20) correspond to
nine different user-defined key bits for both SAFER SK-64 and SAFER SK-
128, which means that one in 29 keys is susceptible (weak) to a linear attack.
Relation (3.19) can be used in a 1R key-recovery linear attack on 4.75-round
SAFER SK-128, under the weak-key assumptions (3.20), as follows:

(a) Let Pi, 1 ≤ i ≤ 8, be the plaintext bytes, and Cj , 1 ≤ j ≤ 8 be the
ciphertext bytes after 4.75 rounds. The following linear relation is derived
from (3.19):

L(P6 ¢ K6
1 ) · 1⊕ L(C1 ¯ K1

10) · 3⊕X(C2 ⊕K2
10) · 2 ⊕

X(C3 ⊕K3
10) · 1⊕ L(C4 ¯ K4

10) · 1 = Ki · ΓKi. (3.21)

(b) The Ki ·ΓKi bit is: (K8
5 ⊕K1

9 ) ·3⊕(K1
4 ⊕K5

4 ⊕K2
5 ⊕K4

5 ⊕K6
5 ⊕K4

6 ⊕K8
6 ⊕

K2
7 ⊕K4

8 ⊕K2
9 ) · 2⊕ (K6

2 ⊕K1
3 ⊕K5

3 ⊕K2
6 ⊕K6

6 ⊕K4
7 ⊕K2

8 ⊕K3
9 ⊕K4

9 ) · 1.

(c) There are five subkey bytes in the left-hand side of (3.21): K6
1 , K1

10,
K2

10, K3
10, K4

10. Recalling the properties of the exponentiation S-box from
Chap. 2, Sect. 2.6.2, the most significant bits of K2

10, and K3
10 cannot be

uniquely identified. Thus, the number of recoverable key bits is 40−2 = 38.

The amount of known plaintext needed is estimated as N ≈ 4 · (2−31)−2 =
264. Using algorithms (3.3), and (3.4) adapted for SAFER, and noticing that
the number of effective text bits is 40, the time complexity is equivalent to
max(238·240, N) = 278 evaluations of (3.21). It corresponds to about 1

8 ·278 = 275
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Figure 3.4: 1R linear attack on 4.75-round SAFER SK-128 (only non-zero bit
masks are depicted).
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4.75-round SAFER SK-128 computations. The memory complexity corresponds
to N plaintext/ciphertext blocks. It is not possible to use the same linear
relation by changing the roles of plaintext and ciphertext, as in DES, because
a SAFER SK round is not encryption-decryption symmetric. Therefore, the
remaining 128-38 = 90 key bits are recovered by exhaustive search, and the
final complexity is 290 4.75-round SAFER SK-128 computations.

3.4.4 Linear Attack on SAFER+

For SAFER+, the following 2.75-round linear relation, with twelve active S-
boxes, was found:

( 0212100202022010x, 0020022002200220x, 2−7) A/X+PHT

(0020022002200220x, 0010011001100110x, 0001100010001001x, 2−22) one round

(0001100010001001x, 0002200020002002x, 2002023123212010x, 2−22) one round

( 2002023123212010x, 2002023123212010x, 2−1) X/A ,(3.22)

with bias ε = 2−49, provided that the following key bit restrictions hold:

lsb1(K4
2 ,K8

2 ,K12
2 ,K13

2 ,K3
3 , K6

3 ,K7
3 ,K10

3 ,K11
3 ,K14

3 ) = 0 , (3.23)
lsb1(K15

3 ,K4
6 ,K5

6 ,K9
6 ,K13

6 , K16
6 ,K6

7 ,K7
7 ,K10

7 ,K11
7 ) = 0 .

The user-defined keys that satisfy restrictions (3.23) are called weak with respect
to linear relation (3.22). The restrictions in (3.23) apply to 20 user-defined key
bits, according to the key schedule of SAFER+ (with any key size), which means
that about one in every 220 keys is susceptible (weak) to a linear attack.

Relation (3.22) can be used in a 0.5R key-recovery attack on 3.25-round
SAFER+, under the weak-key restrictions (3.23), as follows:

(a) Let Pi, 1 ≤ i ≤ 16, be the plaintext bytes, Cj , 1 ≤ j ≤ 16 be the ciphertext
bytes after 3.25-round SAFER+. The following linear relation is derived
from (3.22):

L(P2 ¢ K2
1 ) · 2⊕ L(P3 ¢ K3

1 ) · 1⊕X(P4 ⊕K4
1 ) · 2 ⊕

X(P5 ⊕K5
1 ) · 1⊕X(P8 ⊕K8

1 ) · 2⊕ L(P10 ¢ K10
1 ) · 2 ⊕

X(P12 ⊕K12
1 ) · 2⊕X(P13 ⊕K13

1 ) · 2⊕ L(P15 ¢ K15
1 ) · 1 ⊕

C1 · 2⊕ C4 · 2⊕ C6 · 2⊕ C7 · 3⊕ C8 · 1⊕ C9 · 2 ⊕
C10 · 3⊕ C11 · 2⊕ C12 · 1⊕ C13 · 2⊕ C15 · 1 = Ki · ΓKi. (3.24)

(b) The Ki ·ΓKi bit is: (K2
2 ⊕K4

2 ⊕K8
2 ⊕K10

2 ⊕K12
2 ⊕K13

2 ⊕K3
3 ⊕K6

3 ⊕K7
3 ⊕

K10
3 ⊕K11

3 ⊕K14
3 ⊕K15

3 ⊕K4
6 ⊕K5

6 ⊕K9
6 ⊕K13

6 ⊕K16
6 ⊕K1

7 ⊕K4
7 ⊕K6

7 ⊕
K7

7⊕K9
7⊕K10

7 ⊕K11
7 ⊕K13

7 ) ·2⊕(K3
2⊕K5

2⊕K15
2 ⊕K3

4⊕K6
4⊕K7

4⊕K10
4 ⊕

K11
4 ⊕K14

4 ⊕K15
4 ⊕K4

5 ⊕K5
5 ⊕K9

5 ⊕K13
5 ⊕K16

5 ⊕K8
7 ⊕K12

7 ⊕K15
7 ) · 1.

(c) There are nine subkey bytes in the left-hand side of (3.24): K2
1 , K3

1 ,
K4

1 , K5
1 , K8

1 , K10
1 , K12

1 , K13
1 , and K15

1 . Recalling the properties of the
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exponentiation S-box from Chap. 2, Sect. 2.6.2, the most significant bits of
K4

1 , K5
1 , K8

1 , K12
1 , K13

1 cannot be uniquely identified. Thus, the number
of recoverable key bits is 72− 5 = 67.

The amount of known plaintext is estimated as N ≈ 8 · (2−49)−2 = 2101. Using
algorithms (3.3), and (3.4) from Matsui, and noticing that the number of effec-
tive key bits is 67, and the number of effective text bits is 9 · 8 + 1 = 73, the
time complexity is equivalent to max(267+73, N) = 2140 evaluations of (3.24).
It corresponds to 1

7 · 2140 ≈ 2137 3.25 SAFER+ computations. The memory
complexity corresponds to N plaintext/ciphertext blocks. For SAFER+ with
192-bit keys, the remaining 192-67=125 key bits can be recovered by exhaustive
search.

3.4.5 Linear Attack on SAFER++

The following linear analysis refers to the SAFER++ cipher, and is a contribu-
tion based on [170]. For SAFER++, the following 2.75-round linear relation,
with nine active S-boxes, was found:

( 0010010000000001x, 0000100100000000x, 2−1) A/X+PHT

(0000100100000000x, 0000200200000000x, 2200000002220022x, 2−11) one round

(2200000002220022x, 2100000001120012x, 2120020022010313x, 2−29) one round

( 2120020022010313x, 2120020022010313x, 2−1) X/A ,(3.25)

with bias ε = 2−39, provided that the following key bit restrictions hold:

lsb1(K5
4 ,K8

4 ,K2
5 , K10

5 ,K11
5 ,K15

5 ,K1
6 ,K12

6 ,K16
6 ,K3

7 ,K6
7 , K10

7 ) = 0 , (3.26)
lsb1(K14

7 ) = 1 .

According to the key schedule of SAFER++, these 13 bits map to different user
key bits (both for 128- and 256-bit keys), which means that one in 213 user keys
is susceptible (weak) to a linear attack.

There are separate attacks for each key size. Relation (3.25) can be used
in a 0.5R key-recovery linear attack on 3.25-round SAFER++ with 128-bit key
(item (a)), and in a 1R attack on 3.75-round SAFER++ with 256-bit key (item
(b)), under the weak-key restrictions (3.26), as follows:

(a) Let Pi, 1 ≤ i ≤ 16, be the plaintext bytes, Cj , 1 ≤ j ≤ 16, be the cipher-
text bytes after 3.25-round SAFER++ (with 128-bit key). The following
linear relation is derived from (3.25):

L(P3 ¢ K3
1 ) · 1⊕ L(P6 ¢ K6

1 ) · 1⊕X(P16 ⊕K16
1 ) · 1 ⊕

C1 · 2⊕ C2 · 1⊕ C3 · 2⊕ C6 · 2⊕ C9 · 2⊕ C10 · 2 ⊕
C12 · 1⊕ C14 · 3⊕ C15 · 1⊕ C16 · 3 = Ki · ΓKi . (3.27)

(b) Let Pi, 1 ≤ i ≤ 16, be the plaintext bytes, Cj , 1 ≤ j ≤ 16, be the cipher-
text bytes after 3.75-round SAFER++ (with 256-bit key). The following
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linear relation is derived from (3.25):

L(P3 ¢ K3
1 ) · 1⊕ L(P6 ¢ K6

1 ) · 1⊕X(P16 ⊕K16
1 ) · 1 ⊕

L(C1 ¯ K1
8 ) · 2⊕X(C2 ⊕K2

8 ) · 1⊕X(C3 ⊕K3
8 ) · 2 ⊕

X(C6 ⊕K6
8 ) · 2⊕ L(C9 ¯ K9

8 ) · 2⊕X(C10 ⊕K10
8 ) · 2 ⊕

L(C12 ¯ K12
8 · 1⊕X(C14 ⊕K14

8 ) · 3⊕X(C15 ⊕K15
8 ) · 1 ⊕

L(C16 ¯ K16
8 ) · 3 = Ki · ΓKi . (3.28)

(c) The Ki ·ΓKi bit is: (K3
2 ⊕K6

2 ⊕K16
2 ⊕K5

3 ⊕K8
3 ⊕K2

6 ⊕K10
6 ⊕K11

6 ⊕K15
6 ⊕

K2
7 ⊕K12

7 ⊕K15
7 ) · 1⊕ (K5

4 ⊕K8
4 ⊕K1

5 ⊕K2
5 ⊕K10

5 ⊕K11
5 ⊕K12

5 ⊕K15
5 ⊕

K16
5 ⊕K1

6 ⊕K12
6 ⊕K16

6 ⊕K1
7 ⊕K3

7 ⊕K6
7 ⊕K9

7 ⊕K10
7 ) · 2⊕ (K14

7 ⊕K16
7 ) · 3.

(d) There are three subkey bytes in the left-hand side of (3.27): K3
1 , K6

1 , K16
1 ,

and 13 in the left-hand size of (3.28): K3
1 , K6

1 , K16
1 , K1

8 , K2
8 , K3

8 , K6
8 , K9

8 ,
K10

8 , K12
8 , K14

8 , K15
8 , K16

8 . Recalling the properties of the exponentiation
S-box from Chap. 2, Sect. 2.6.2, the most significant bits of K16

1 , K2
8 , K3

8 ,
K6

8 , K10
8 , K14

8 and K15
8 cannot be uniquely identified. In the 128-bit key

case, the number of effective key bits is reduced to 24−1 = 23, and in the
256-bit key case, to 104− 7 = 97.

The amount of known plaintext needed in estimated as N ≈ 8 · (2−39)−2 =
281. For the 128-bit key case, the complexity is 223 · 281 = 2104 evaluations
of (3.27), which is equivalent to about 1

7 · 2104 ≈ 2101 3.25-round SAFER++
computations.

For the 256-bit key case, the complexity is 297 · 281 = 2178 evaluations of
(3.28), which is equivalent to 1

4 · 2178 = 2176 3.75-round SAFER++ computa-
tions. The memory complexity corresponds to N known plaintext/ciphertext
blocks (for both key sizes).

3.5 A Ciphertext-only Attack

In the previous section no assumption was made on the plaintext distribution.
In many cases, the plaintext may consist of redundant data, such as ASCII
characters with values between 20x and 7Ex. Matsui developed for this particu-
lar case a ciphertext-only attack on reduced-round DES [154]. For SAFER SK
ciphers, experiments indicated the following 2.25-round linear relation:

(0000000000000080x, 0000000000000100x, 0100000000000000x, 2−6) one round

(0100000000000000x, 0200000000000000x, 0202020202020202x, 2−9) one round

( 0202020202020202x, 0202020202020202x, 2−1) X/A ,(3.29)

which has bias ε = 2−13 provided the following key bit restrictions hold:

lsb1(K1
4 ,K2

5 ,K3
5 ,K6

5 ,K7
5 ) = 0 . (3.30)

The linear relation (3.29) can be used in a 1R linear attack on 2.75-round SAFER
SK-128, under the weak-key restrictions (3.30), as follows:
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(a) Let Pi, for 1 ≤ i ≤ 8, be the plaintext bytes, and Ci, the ciphertext bytes
after 2.75 rounds. The following linear relation is derived from (3.29):

P8 · 80x ⊕ L(C1 ¯ K1
6 ) · 2⊕X(C2 ⊕K2

6 ) · 2 ⊕
X(C3 ⊕K3

6 ) · 2⊕ L(C4 ¯ K4
6 ) · 2⊕ L(C5 ¯ K5

6 ) · 2 ⊕
X(C6 ⊕K6

6 ) · 2⊕X(C7 ⊕K7
6 ) · 2⊕ L(C8 ¯ K8

6 ) · 2 =
Ki · ΓKi . (3.31)

If the distribution of the MSB of P8 in not uniform and can be estimated,
then relation (3.31) depends only on the ciphertext. In the case of ASCII
text, the bias of (3.31) does not change (ε = 2−13).

(b) The Ki · ΓKi bit is: K8
1 · 80x ⊕ (K8

2 ⊕K1
3 ) · 1 ⊕ (K1

4 ⊕K1
5 ⊕K2

5 ⊕K3
5 ⊕

K4
5 ⊕K5

5 ⊕K6
5 ⊕K7

5 ⊕K8
5 ) · 2.

(c) There are eight subkey bytes in the left-hand side of (3.31): Ki
6, 1 ≤ i ≤

8. Recalling the properties of the exponentiation S-box from Chap. 2,
Sect. 2.6.2, the most significant bits of K2

6 , K3
6 , K6

6 , and K7
6 cannot be

uniquely determined, and the number of effective key bits reduces to 60.

The amount of known plaintexts is estimated as N ≈ 8 · (2−13)−2 = 229. The
time complexity is equivalent to 229 · 260 = 289 evaluations of (3.31), which
corresponds to about 1

5 · 289 ≈ 287 2.75-round SAFER SK-128 computations.
The memory complexity corresponds to the amount of counters for the effective
key and text bits: 264.

The actual plaintext does not need to be composed of ASCII text only.
Experiments show that image files (.JPG format), audio files (.MP3 format)
also contain some small bias in the most significant bit of each byte, such as
ε = 2−10, for instance. Combined with the bias of (3.31) this results in an overall
bias of 2−22, which implies N ≈ 8 · (2−22)−2 = 247 known plaintext/ciphertext
blocks. It was observed that general-purpose (UNIX) file compression programs
can destroy this MSB redundancy in ASCII files.

3.6 Linear Cryptanalysis of the PES Cipher

The Proposed Encryption Standard (PES) cipher is an iterated block cipher
designed by Lai and Massey in 1990 [136]. PES is a 64-bit block cipher, using a
128-bit key, and iterating 8 rounds plus an output transformation. Appendix B
contains further details about PES and its key schedule algorithm. Although
PES has 8.5 rounds, some attacks will be mentioned on PES variants denoted r-
round PES. In these cases, the subkeys for r > 8.5 are assumed to be generated
analogous to previous subkeys. The notation r.5 indicates that the output
transformation is included.

In [57], Daemen et al. described a class of 223 keys (out of a key space of size
2128) for the IDEA cipher that exhibited a linear relation with probability one.
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Table 3.2: One-round linear relations for PES.

Linear Relation Restrictions on Subkeys
α(r) 1r→ α(r+1) Z

(r)
1 Z

(r)
2 Z

(r)
5 Z

(r)
6

(0, 0, 0, 1) 1r→ (0, 0, 0, 1) - - - {0, 1}
(0, 0, 1, 0) 1r→ (0, 1, 1, 1) - - {0, 1} {0, 1}
(0, 0, 1, 1) 1r→ (0, 1, 1, 0) - - {0, 1} -
(0, 1, 0, 0) 1r→ (0, 1, 0, 0) - {0, 1} - {0, 1}
(0, 1, 0, 1) 1r→ (0, 1, 0, 1) - {0, 1} - -
(0, 1, 1, 0) 1r→ (0, 0, 1, 1) - {0, 1} {0, 1} -
(0, 1, 1, 1) 1r→ (0, 0, 1, 0) - {0, 1} {0, 1} {0, 1}
(1, 0, 0, 0) 1r→ (1, 1, 0, 1) {0, 1} - {0, 1} {0, 1}
(1, 0, 0, 1) 1r→ (1, 1, 0, 0) {0, 1} - {0, 1} -
(1, 0, 1, 0) 1r→ (1, 0, 1, 0) {0, 1} - - -
(1, 0, 1, 1) 1r→ (1, 0, 1, 1) {0, 1} - - {0, 1}
(1, 1, 0, 0) 1r→ (1, 0, 0, 1) {0, 1} {0, 1} {0, 1} -
(1, 1, 0, 1) 1r→ (1, 0, 0, 0) {0, 1} {0, 1} {0, 1} {0, 1}
(1, 1, 1, 0) 1r→ (1, 1, 1, 0) {0, 1} {0, 1} - {0, 1}
(1, 1, 1, 1) 1r→ (1, 1, 1, 1) {0, 1} {0, 1} - -

These linear relations, called linear factors in [57], assumed that the multiplica-
tive subkeys Z

(r)
i , i ∈ {1, 2, 5, 6} are either 0 or 1. These are called weak-key

assumptions. The contribution of this section is a similar analysis on the PES
cipher, and is based on [172].

Table 3.2 contains a table of one-round linear relations for PES, with restric-
tions on multiplicative subkeys. The terminology α(r) → α(r+1) denotes that
the round input bit mask α(r) causes the round output bit mask α(r+1) with
probability one. Each 4-tuple corresponds to a bit mask for four 16-bit words in
a 64-bit block. Based on Table 3.2, the largest weak-key class found for PES uses
the one-round iterative linear relation (0, 0, 0, 1) → (0, 0, 0, 1), which holds with
probability one, provided that the key bits numbered 13–48, 66–94, and 109–
123 are zero (weak-key assumption). This leaves key bits 0–12, 49–65, 95–108,
and 124–127 unrestricted, and results in a weak-key class of size 248. The bit
masks for each intermediate round of PES are detailed in Table 3.3. The linear
weak-key class in Table 3.3 can be extended beyond 8.5 rounds. For example the
one-round linear relation (0, 0, 0, 1) → (0, 0, 0, 1) iterated for 16-round PES can
distinguish it from a random permutation for a weak-key class of size 210; for
a 17-round PES variant, this relation holds only for the all-zero user key (com-
posed of 128 zero bits). The one-round linear relation (0, 1, 0, 1) → (0, 1, 0, 1)
holds for 17-round PES for a weak-key class of size 27; for 17.5-round PES this
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Table 3.3: Linear relation for largest weak-key class of PES.

Round r Linear Relation msb15(Z
(r)
6 ) Weak-Key Class Size

1 (0, 0, 0, 1) 1r→ (0, 0, 0, 1) 80–94 2113

2 (0, 0, 0, 1) 1r→ (0, 0, 0, 1) 73–87 2106

3 (0, 0, 0, 1) 1r→ (0, 0, 0, 1) 66–80 299

4 (0, 0, 0, 1) 1r→ (0, 0, 0, 1) 34–48 284

5 (0, 0, 0, 1) 1r→ (0, 0, 0, 1) 27–41 277

6 (0, 0, 0, 1) 1r→ (0, 0, 0, 1) 20–34 270

7 (0, 0, 0, 1) 1r→ (0, 0, 0, 1) 13–27 263

8 (0, 0, 0, 1) 1r→ (0, 0, 0, 1) 109–123 248

OT (0, 0, 0, 1) 0.5r→ (0, 0, 0, 1) – 248

Table 3.4: 2.5-round linear relation for PES with Daemen’s new key schedule.

Round r Linear Relation msb15(Z
(r)
6 )

3 (0, 0, 0, 1) 1r→ (0, 0, 0, 1) 66–80
4 (0, 0, 0, 1) 1r→ (0, 0, 0, 1) 34–48

4.5 (0, 0, 0, 1) 0.5r→ (0, 0, 0, 1) –

linear relation only holds for the all-zero user key. Notice that the all-zero user
key is the only key for which there is a linear relation holding for r-round PES
for any r > 0.

In [57], Daemen et al. suggested a modified key schedule for IDEA in or-
der to avoid this linear attack under weak-key assumptions. The modification
also applies to PES and consisted in xoring each 16-bit subkey word with the
constant value 0daex = 00001101101011102. This modified key schedule implies
that under some weak-key assumption, some subkey bits would have to be ‘0’,
while under other assumptions, these same key bits would have to be ‘1’, a con-
tradiction. This new key schedule effectively avoids linear relations such as in
Table 3.3.

The longest linear relation found for PES with Daemen’s modified key sched-
ule, and without key bit contradictions, has 2.5 rounds. It requires that key bits
66–69, 72, 75, 77, 34–37, 40, 43, 45 be zero, and key bits 70, 71, 73, 74, 76, 78–
80, 38, 39, 41, 42, 44, 46–48 be one. These restrictions on 30 key bits represent
a weak linear key class of size 298, that is detailed in Table 3.4.
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3.7 Conclusions

This chapter described the linear cryptanalysis technique as developed by Mat-
sui in [152, 153, 154]. This technique was applied to several SAFER ciphers,
under weak-key restrictions, and using non-homomorphic linear relations. Ap-
proximations were restricted to the two least significant bits per byte. Table 3.5
lists the complexities of several attacks on SAFER ciphers.

These linear attacks on SAFER ciphers use non-homomorphic relations and
work under particular key bit restrictions, unlike previous approaches that em-
ployed homomorphic relations only, and were key independent.

Moreover, linear attacks on PES cipher were described, which also assumed
some key bit restrictions, following the work of Daemen on IDEA [57]. Larger
linear weak-key classes were identified for PES, for extended variants, and for
reduced-round variants under a modified key schedule algorithm, as listed in
Table 3.6. These results indicate, in particular for PES, that even doubling the
number of rounds of the cipher is not enough to avoid the presence of weak keys.
Moreover, there is a 50% reduction in performance for 17-round PES. This may
indicate a need for a redesign of the key schedule algorithm of PES (and IDEA).



62 CHAPTER 3. LINEAR CRYPTANALYSIS

Table 3.5: Attack complexities on SAFER ciphers.

Cipher Attack #Rounds Data Memory Time Source

SAFER-32 Linear 5.25 232 KP 232 257 Sect. 3.4.2

SAFER K-64 Trunc. Diff. 5 239 CP 232 261 [120]

Trunc. Diff. 5 245 CP 232 246 [120]

Trunc. Diff. 5 246 CP 232 235 [120]

SAFER SK-64 Imposs. Diff. 2.75 232 CP 250 242 [171]

Square 3.25 210.3 CP 210.3 238 [171]

Imposs. Diff. 3.75 232 CP 240 262 [171]

Trunc. Diff. 5 238 CP 232 246 [231]

Trunc. Diff. 6 253 CP 232 261 [231]

SAFER SK-128 Imposs. Diff. 2.75 239 CP 258 264 [171]

Square 3.25 210.3 CP 210.3 238 [171]

Linear 4.75 264 KP 264 290 Sect. 3.4.3

SAFER+ ] Imposs. Diff. 2.75 264 CP 297 260 [171]

Square 3.25 29.6 CP 29.6 270 [171]

SAFER+ † Linear 3.25 2101 KP 2101 2137 Sect. 3.4.4

SAFER++ ] Imposs. Diff. 2.75 264 CP 297 260 [171]

Square 3.25 29.6 CP 29.6 270 [171]

Linear 3.25 281 KP 281 2101 Sect. 3.4.5
Multiset 3.25 216 CP 24 216 [30]
Multiset 4.25 248 CP 248 270 [30]
Multiset 4.75 248 CP 248 294 [30]
Boomerang 4.25 241 CP/ACC 241 241 [30]
Boomerang 5.25 277 CP/ACC 248 277 [30]
Boomerang 5.75 2107 CP/ACC 248 2107 [30]

SAFER++ ‡ Linear 3.75 281 KP 281 2176 Sect. 3.4.5

]: 128-bit key.
†: 192-bit key.
‡: 256-bit key.
KP: Known Plaintext.
CP: Chosen Plaintext.
ACC: Adaptively-Chosen Ciphertext.

Table 3.6: Linear Weak-Key Classes for PES and variants.

Cipher Weak-Key Fraction of
Class Size Key Space

2.5-round PES variant by Daemen 298 1 in 280 keys
8.5-round PES 248 1 in 2118 keys
16-round PES 210 1 in 2121 keys
17-round PES 27 1 in 230 keys



Chapter 4

Differential Cryptanalysis

I haven’t failed. I’ve just found
10,000 ways that won’t work.

Thomas A. Edison.

4.1 Introduction

Differential cryptanalysis is a chosen-plaintext technique developed by Biham
and Shamir in [24] against reduced-round variants of the DES cipher, and later
applied to the full 16-round DES [27]. Some early related work on differential
attacks dates back to the analysis of Murphy [166] on the FEAL-4 block cipher.
DC has also been applied to ciphers based on SPN structures such as SAFER
K/SK [120] and Lucifer [72], and even to hash functions [25]. Therefore, DC
has been considered as one of the most general cryptanalytic attacks.

This chapter provides an overview of the differential cryptanalysis (DC) and
related techniques, based on several references [24, 120, 135]. Differential-related
techniques such as square, impossible-differential and boomerang attacks are
described, and applied to IDEA, PES, Hierocrypt-3, Hierocrypt-L1, Skipjack,
and SAFER ciphers.

4.2 Preliminaries

DC analyzes the effect of differences of pairs of plaintext blocks on the distribu-
tion of differences of the ciphertext pair. For DES, the difference operation was
defined as bitwise exclusive-or. In general, the difference operator is selected in
order to make the text difference independent of the key, which is assumed to
be fixed. More formally,

Definition 4.1 (Difference Operation) The difference between two bit strings
X and X∗ is defined as

∆X = X ⊗ (X∗)−1 ,

63
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where ⊗ is a group operation1 used to combine a key with the internal data X
in a cipher. (X∗)−1 is the inverse of X∗ with respect to the ⊗ operator.

Therefore, if the same key K is used for both X and X∗, then (X⊗K)⊗ (X∗⊗
K)−1 = X ⊗ K ⊗ K−1 ⊗ (X∗)−1 = X ⊗ (X∗)−1 = ∆X, that is, the ⊗-based
difference is invariant under the ⊗-mixed key.

This correlation for the key-mixing operation can be extended to a full round,
and subsequently to multiple rounds, leading to the concept of a differential
characteristic [27].

Definition 4.2 (Differential Characteristic) An r-round characteristic for an
n-bit block cipher is a sequence of n-bit text differences defined as an (r+1)-tuple
(δ0, . . . , δr) where ∆P = δ0 is the input difference, and ∆Ci = δi, for 1 ≤ i ≤ r,
is the i-th round output difference. For each pair (δi, δi+1), with 0 ≤ i ≤ r − 1,
there is an associated transition probability pi that a text pair with difference
δi+1 will be observed at the round output, given an input pair with difference δi.
This relationship is denoted δi → δi+1.

Definition 4.3 (Right Pair [24]) A right pair with respect to an r-round char-
acteristic (δ0, . . . , δr) is a text pair (P, P ∗) for which P ⊗P ∗ = δ0, and for each
round i, 1 ≤ i ≤ r, the encryption of the pair using the unknown, independent
subkey ki, has the round input difference δi−1 and the round output difference
δi. Every pair which is not a right pair, with respect to the characteristic and
independent round subkeys, is called a wrong pair.

Two characteristics ∆1 = (δ0,1, . . . , δr,1) and ∆2 = (δ0,2, . . . , δt,2) can be
concatenated if δr,1 = δ0,2. The result of their concatenation is ∆3 = (δ0,1,
. . ., δr−1,1, δ0,2, . . ., δt,2). The probability of the concatenation of multiple-
round characteristics is usually approximated by the product of their one-round
components. If the cipher is a Markov cipher [135], then this probability is
independent of the actual inputs to the round, and is computed over all choices
of the round key.

Definition 4.4 (Markov Cipher) If there is a group operation ⊗ for defining
differences such that for all choices of α (α 6= 0) and β (β 6= 0), Pr(∆Y =
β|∆X = α, X = γ) is independent of γ when the subkey K is chosen according to
a uniform distribution, then an iterated cipher with round function Y = FK(X)
is a Markov cipher.

If the round keys are independent and uniformly distributed then the individual
probabilities pi are also independent:

Pr(∆Cr = δr|∆P = δ0) =
r∏

i=1

Pr(∆Ci = δi|∆Ci−1 = δi−1) . (4.1)

1An implicit bit-string-to-integer conversion is assumed: the string X = (xn−1, . . . , x0) is
associated with the integer value

Pn−1
i=0 xi · 2i.
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Experiments on DES, using exclusive-or as the difference operator [24] demon-
strated that the product in (4.1) is a good approximation of the real probability
for practical attacks, even when the round subkeys are generated from a deter-
ministic key schedule algorithm.

A special type of characteristic is the trivial characteristic in which the input
and output differences of the round function are zero. The trivial characteristic
is useful for differential attacks, particularly for Feistel ciphers, because it can
propagate across the round function with probability one, independent of the
key or the round function. The trivial characteristic is an important component
in some iterative characteristics. A t-round iterative characteristic has identical
input and output differences; therefore, it can be concatenated with itself and
with a fixed reduction in probability at each additional t rounds. For DES, the
trivial characteristic has one round, but for unbalanced Feistel ciphers it can
have more rounds.

In some differential attacks, the knowledge of intermediate round differences
is not possible, or not even necessary. Namely, only the input and output differ-
ences need to be predictable. This observation led to the notion of differentials
by Lai, Massey and Murphy in [137].

Definition 4.5 (Differentials) An r-round differential is a pair of text differ-
ences (δ0, δr) where the input difference is ∆P = δ0 and the output difference is
∆C = δr.

Definition 4.6 [115] The probability of an r-round differential (∆P, ∆C) is:

Pr(∆C = δr|∆P = δ0) =
∑

δ1

. . .
∑

δr−1

r∏

i=1

Pr(∆Ci = δi|∆Ci−1 = δi−1) ,

where ∆C0 = ∆P .

A differential will have, in general, a higher probability than a characteristic,
because the former corresponds to the union of all characteristics with the same
input and output differences (analogous to the notion of a linear hull in LC).

The concatenation of characteristics to multiple rounds implicitly assumes
that subkeys are independent and uniformly distributed (Assumption 2.1 in
Chap. 2), and also the

Assumption 4.1 (Hypothesis of Stochastic Equivalence [135]) For virtually all
high probability (r − 1)-round differentials (α, β), Pr(∆Yr−1 = β|∆X = α) =
Pr(∆Yr−1 = β|∆X = α, K1 = k1, . . . ,Kr−1 = kr−1) holds for a substantial
fraction of the subkey values (k1, . . . , kr−1).

Assumption 4.1 means that the propagation of differences across a key-dependent
round component is assumed to be statistically independent of the unknown sub-
key values, and the associated probability is the average over all possible subkey
values.

Finding a high-probability characteristic is the first step in a differential
attack. The amount of chosen plaintexts needed is inversely proportional to
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the probability of the characteristic. Given an n-bit block cipher, and a char-
acteristic with probability p À 2−n, about p−1 chosen text pairs are needed
to distinguish the cipher from a random permutation. A key-recovery attack
usually employs a characteristic which is a few rounds shorter than the cipher,
similar to the tR attack in linear cryptanalysis (Chap. 3, Def. 3.6). Subkeys
in the rounds surrounding the characteristic can then be guessed, and if the
expected input/output differences are obtained then the suggested subkey is a
candidate for the correct value. An attack that recovers t subkey bits requires,
in general, 2t counters to keep track of how often each subkey is suggested. Each
of the 2t subkeys is tested exhaustively, so the amount of subkey bits has to be
manageable for a practical attack.

An important concept in a key-recovery DC attack is the notion of signal-
to-noise ratio.

Definition 4.7 (Signal-to-Noise Ratio [26]) The ratio between the number of
right pairs and the average count of the incorrect subkeys in a counting scheme
is called the signal-to-noise ratio of the counting scheme and is denoted S/N.

To find the correct subkey(s) using a counting scheme, a high probability
characteristic is needed, as well as a sufficiently high number of right pairs. The
number of required pairs depends on the probability of the characteristic, p,
the number of simultaneous subkey bits that are counted, k, the average count
α per analyzed pair (excluding the wrong pairs that can be discarded before
the counting), and the fraction β of analyzed pairs among all the pairs. The
counters contain an average value of m·α·β

2k , where m is the number of created
pairs. The right subkey value is counted about m · p times by the right pairs, in
addition to the random counts from the wrong pairs. The signal-to-noise ratio
of a counting scheme is:

S/N =
m · p
m·α·β

2k

=
2k · p
α · β .

A direct consequence of the definition of S/N is that the signal-to-noise ratio of
a counting scheme is independent of the number of pairs used in an attack.

In [26], Biham and Shamir related high values of S/N (namely, S/N À 1)
to a small number of right pairs needed in a successful attack, and S/N ≤ 1
to an unreasonably high number of right pairs. However, in [43], Borst et al.
discovered in an attack on reduced-round IDEA, that the case S/N > 1 indicates
that the right subkey value is among the most suggested by the characteristic
(highest counter values), while the case S/N < 1 indicates that the right subkey
value is among the least suggested by the characteristic (lowest counter values).
The overall consensus is that the case S/N= 1 does not allow to distinguish the
right subkey from the wrong ones.

4.2.1 Known-Plaintext DC Attacks

DC is a chosen-plaintext attack, but it can also work under a known-plaintext
setting, although with an increased number of text pairs [27]. Assume that
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a DC attack on an n-bit block cipher requires m pairs, and that 2n/2 · √2m
random known plaintexts/ciphertexts pairs are provided. These known plain-
text/ciphertext pairs can generate (2n/2·√2m)2

2 = 2n ·m pairs whose difference
can be immediately computed. It means that there are about 2n·m

2n = m pairs
for each possible n-bit difference. In particular, with high probability, there are
about m pairs with the needed difference for the given DC attack.

4.3 Higher-Order Differential Cryptanalysis

Many related cryptanalytic attacks were derived from the original DC attack.
For instance, the higher-order differential cryptanalysis attack by Lai in [134] is
a generalization of differential cryptanalysis using iterated text differences. Lai
defined in [134] a text difference as the derivative of discrete functions, and its
generalization as higher-order derivatives.

Definition 4.8 (Derivatives [134]) Let (S, +) and (T,+) be Abelian groups.
For a function f : S → T , the derivative of f at point a ∈ S is defined as

∆af(x) = f(x + a)− f(x) .

The derivative of f is itself a function from S to T , so the i-th derivative (i > 1)
of f at (a1, a2, . . . ai) can be defined as

∆(i)
a1,...,ai

f(x) = ∆ai(∆
(i−1)
a1,...ai−1

f(x)) ,

where ∆(i−1)
a1,...,ai−1f(x) is the (i−1)-th derivative of f at (a1, . . . , ai−1). The 0-th

derivative of f is defined to be f(x) itself.

The following properties of derivatives refer to functions f : GF(2)n → GF(2)m.

Proposition 4.1 [134] Let L[a1, . . . , ai] be the list of all 2i possible linear com-
binations of a1, . . . , ai. Then

∆(i)
a1,...,ai

f(x) =
⊕

c∈L[a1,...,ai]

f(x + c) .

Corollary 4.1 [134] Derivatives of binary functions are independent of the or-
der the derivation is taken, that is, for any permutation π(j) of the index j

∆(i)
a1,...,ai

f(x) = ∆(i)
aπ(1),...,aπ(i)

f(x) .

Proposition 4.2 [134] If ai is linearly dependent on a1, . . . , ai−1, then

∆(i)
a1,...,ai

f(x) = 0 .

The probability of a higher-order differential is defined similarly to that of a dif-
ferential: it is the conditional probability that the output higher-order difference
takes on the expected value, given the input higher-order difference.
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In the following sections some DC related attacks will be described: the
square attack, the impossible differential attack, and (1st-order) differential at-
tacks, with applications to real block ciphers. It will be assumed that a fixed
key is used to encrypt all known/chosen plaintexts/ciphertexts, at least in a
single text structure [24].

4.4 The Square Attack

The Square attack was originally presented as a dedicated attack to the Square
block cipher [59], by exploring the word-wise structure of the cipher, where all
data blocks are partitioned and processed in 8-bit words. This attack has also
been applied to other block ciphers with either the Feistel or the SPN structure,
such as IDEA [167], Skipjack [173, 95], MISTY1 [111], and SAFER [119]. This
attack is closely related to saturation attacks by Lucks [143], integral cryptanalysis
by Hu et al. [94], and structural cryptanalysis by Biryukov and Shamir [32]. The
Square attack is a chosen-plaintext technique that has similarities to higher-
order differential attacks [119], in the sense that the former uses an iterated
difference of several words under some group operation as an invariant property
across multiple rounds of a cipher, in a similar setting as a text pair, under
a difference operator, is used as a distinguisher in DC. Nonetheless, in [125],
Knudsen and Wagner renamed this technique as integral cryptanalysis, setting it
in a different framework from higher-order differentials.

The basic tools in a Square attack relate to the notions of word status,
multisets, and integrals.

Definition 4.9 (Word Status) An n-bit active word assumes all 2n possible
values, that is, a permutation of 2n values. Analogously, a passive word always
assumes a fixed value. Words which are neither active nor passive are termed
garbled.

The following definition generalizes the original concept presented in [59]:

Definition 4.10 (Λ-set) A Λ-set is a multiset of 2n text blocks in which the
n-bit words are either active, passive or garbled.

Definition 4.11 (Balanced Words in a Λ-set) Let xj
i be the j-th value of the

n-bit word xi in the i-th position in a Λ-set. Whenever the integral value

∫ 2n−1

j=0

xj
i = c

holds for a given constant c, the word xi is said to be balanced over the given Λ-
set. The integral operation and the c constant depend on the underlying group,
for instance, c = 0 for (ZZ16

2 ,⊕), or c = 0 for (ZZ∗216+1,¯), or c = 2n−1 for
(ZZ216 , ¢).
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The terminology integral for the sum of words in a Λ-set is adopted from Knudsen
and Wagner [125]. Although their definition extended the notion of sum of
variables to products of variables, depending on the group operation used in the
cipher, all Square attacks described further will use the exclusive-or operator.
This decision was based on the fact that active, passive, balanced and garbled
(non-balanced) words can be more clearly distinguished under the xor operation.
For the multiplication operator, ¯2n−1

i=0 i = 0 for an active word, ¯2n−1
i=0 c =

c2n

= c0 = 1 for a passive word, but for a balanced word the product can
assume any value. For the addition operator, ¢2n−1

i=0 i = 2n−1 for an active
word, ¢2n−1

i=0 c = 2n · c = 0 for a passive word, but the sum of a balanced word
can assume any value.

Active and passive words are always balanced, by definition. Garbled words
can also be balanced, but not always.

A square attack starts by carefully choosing a Λ-set such that at least one
balanced word can be identified along a Λ-set chain for as many rounds as
possible across the cipher. By following the propagation of balanced words
through multiple rounds, it is possible to identify a pattern of active, passive and
garbled words. This pattern is useful for an attack as long as the Λ-set contains
at least one balanced word. This Λ-set chain, together with the integral, can be
used as a distinguisher from a random permutation or in a key-recovery attack,
to determine subkeys in rounds surrounding the chain. The status of words in a
Λ-set will be shortly denoted by: ‘A’ for an active word, ‘P’ for a passive word,
‘?’ for a garbled word, and ‘*’ for a balanced word.

Depending on the number of rounds under analysis, a square attack can be
classified as follows:

Definition 4.12 (tR Attack) A tR square attack on an n-round cipher is a
key-recovery attack that uses the integral property to recover subkey bits using
an (n− t)-round Λ-set chain.

The value of t can be fractional if only part of a round is included in the attack,
such as in linear attacks (Chap. 3).

In [125], Knudsen and Wagner described the notion of higher-order integrals
as corresponding to multisets with larger word sizes. Suppose a cipher operates
on block of w n-bit words. A first-order integral for this cipher would use
multisets with n-bit (active, passive, or garbled) words. A second-order integral
would use 2n-bit words. The definition extends naturally to higher orders.
However, the amount of chosen plaintexts increases sharply with the order of
the integral. An example of a 1st-order multiset S with w = 4 words is S =
{(i, x2, x3, x4)|0 ≤ i ≤ 2n − 1, x1, x2, x3 ∈ ZZn

2}, and |S| = 2n. An example of
2nd-order multiset is T = {(i mod 2n, x2, (i À n) mod 2n, x4)|0 ≤ i ≤ 22n −
1, x2, x4 ∈ ZZn

2}, where À means right shift by n bits, x2, x4 are fixed n-bit
words, and |T | = 22n = |S|2.
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4.4.1 Square Attacks on IDEA and PES

The contribution of this section comes from [167]. Only the best attacks are
described. For the IDEA and PES ciphers, the word size for a Λ-set is fixed
at n = 16. Smaller and larger word sizes did not indicate better trade-offs
for a square attack. Appendix B contains a more comprehensive description
of these ciphers and the key schedule algorithms. The propagation of balanced
words, according to the different operations in IDEA and PES, can be described
according to the following:

Theorem 4.1 (Propagation Rules for Words in a Λ-set) In one-round IDEA
and PES, the active, passive and garbled words change status according to the
cipher operation and the input word status, as summarized in Table 4.1.

Table 4.1: Input/output word status in a multiset for IDEA and PES operators.
⊕ A P ?

A A/P/? A ?
P A P ?
? ? ? A/P/?

� A P ?

A P/? A ?
P A P ?
? ? ? A/P/?

¯ A P ?

A P/? A ?
P A P ?
? ? ? A/P/?

The status of a word in Table 4.1 represent the results with highest probability.
Depending on the word size, other less probable patterns may exist.

In an attack description, a notation such as (Y1 Y2 Y3 Y4) → (W1 W2 W3 W4)
denotes that the input Λ-set whose four input words have status Y1 Y2 Y3 Y4,
results after one round of IDEA or PES, in the output Λ-set with word status
W1 W2 W3 W4, with probability one, where Yi,Wi ∈ {A,P, ∗, ?}. Chains of
4-tuples represent the propagation of Λ-sets across multiple rounds and imply
that the output Λ-set in one multiset is the same as the input Λ-set to the next.

Let P (i) = (P (i)
1 , P

(i)
2 , P

(i)
3 , P

(i)
4 ), for 0 ≤ i < 216, denote the ith plaintext

block and C(i)= (C(i)
1 , C

(i)
2 , C

(i)
3 , C

(i)
4 ), the corresponding ciphertext block in

a Λ-set. The longest Λ-set chains obtained for IDEA have the form:

(P A P P ) → (A A ∗ A) → (? ? ? ?) . (4.2)

(P P P A) → (A A A ∗) → (? ? ? ?) . (4.3)

Chains (4.2) and (4.3) are analyzed together. The chain (4.2) can be used in a
0.5R attack on 2.5-round IDEA by observing that (C(i)

3 ¯Z
(3)
3 )⊕(C(i)

4 ¯(Z(3)
4 )−1),

corresponding to the rightmost input to the MA-box in the second round, is
balanced (Fig. 4.1). In order to discard wrong key candidates for (Z(3)

3 , Z
(3)
4 ),

two Λ-sets are used. The msb1(Z
(3)
3 ) cannot be uniquely determined, because

if either Z
(3)
3 or Z

(3)
3 ⊕ 8000x is used, the integral is the same, since the value

8000x is xored an even number of times. Similarly, Z
(3)
4 and Z

(3)
4 ¯ 0 are

indistinguishable, since Z
(3)
4 ¯ (Z(3)

4 )−1 = (Z(3)
4 ¯ 0)−1 ¯ Z

(3)
4 ¯ 0. The partial

attack complexity is 217 chosen plaintexts, 217 blocks of memory, and 216 ·230 +
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Figure 4.1: 0.5R attack on 2.5-round IDEA using multiset chain (4.2).

216 · 214 ≈ 246 half-round IDEA computations. Next, chain (4.3) can be used to
find (Z(3)

1 , Z
(3)
2 ), by observing that (C(i)

1 ¯ (Z(3)
1 )−1)⊕ (C(i)

2 ¯Z
(3)
2 ) is balanced

(Fig. 4.2).
In order to discard wrong key candidates, two Λ-sets are used. The complex-

ity is 217 chosen plaintexts, 217 blocks of memory, and 216 · 232 + 216 · 216 ≈ 248

half-round IDEA computations. The remaining 128-60=68 key bits can be found
by exhaustive search leading to a final time complexity of 268 2.5-round IDEA
computations.

There is another approach that recovers subkey values at both ends of a
Λ-set chain, and improves on the former attack. Consider the following Λ-set
chains:

(P A P A) → (? ? ? ?) , (4.4)

(A P A P ) → (? ? ? ?) . (4.5)
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Figure 4.2: 0.5R attack on 2.5-round IDEA using multiset chain (4.3).

Using chain (4.5), the technique consists in guessing subkeys Z
(1)
1 and Z

(1)
3

for each Λ-set used, in which the two active words contain the same permuta-
tion. These two subkeys are guessed by multiplying the first active word by
a candidate subkey for Z

(1)−1

1 , and by subtracting from the third active word
a candidate subkey for Z

(1)
3 . For the correct key guesses, the resulting active

words will contain the same permutation after the group operations. This im-
plies that the integral of the leftmost input into the MA-box will be zero. The
resulting chain (Fig. 4.3) becomes

(A P A P ) → (A A P P ) → (? ? ? ?) . (4.6)

Two additional subkey words can be obtained at the output transformation:
for the correct pair (Z(3)

1 , Z
(3)
2 ), the word (C(i)

1 ¯ (Z(3)
1 )−1)⊕ (C(i)

2 ¯Z
(3)
2 ) might

be active. Similarly, for the correct pair (Z(3)
3 , Z

(3)
4 ), the word (C(i)

3 ¯ Z
(3)
3 ) ⊕

(C(i)
4 ¯ (Z(3)

4 )−1) might be active. According to the key schedule of IDEA, Z
(1)
1
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Figure 4.3: 1R attack on 2.5-round IDEA using multiset chain (4.6).

and Z
(3)
1 share bits 0–8 of the user-defined key, and similarly Z

(1)
1 and Z

(3)
4 share

bits 9–15 (Table B.1 in Appendix B). Therefore, the 4-tuple (Z(1)
1 , Z

(1)
3 , Z

(3)
3 ,

Z
(3)
4 ) consists of 48 independent key bits. The attack uses three Λ-sets, which

reduces the chances of a wrong key-tuple being accepted to 2−48.
The data complexity is 3 · 216 · 232 ≈ 249.5 chosen plaintexts, and time

complexity 216 · 248 + 216 · 232 + 216 · 216 ≈ 264 2.5-round IDEA computations.
Once Z

(1)
1 and Z

(1)
3 are recovered, they can be used to recover (Z(3)

1 , Z
(3)
2 )

with two of the previous Λ-sets and 216 · 232 + 216 · 216 ≈ 248 half-round IDEA
computations. Notice that (Z(3)

1 , Z
(3)
2 ) and (Z(1)

1 , Z
(1)
3 ) do not share any key

bits. The remaining 48 key bits can be found by exhaustive search.
A similar attack can be applied using chain (4.4), but in this case, the 4-

tuple (Z(1)
2 , Z

(1)
4 , Z

(3)
3 , Z

(3)
4 ) corresponds to 55 independent key bits, because

Z
(1)
2 and Z

(3)
4 share only nine key bits: 16–24. And the 4-tuple (Z(1)

2 , Z
(1)
4 , Z

(3)
1 ,

Z
(3)
2 ) corresponds to 64 independent key bits.
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Figure 4.4: Related-key 0.5R attack on 2.5-round IDEA using multiset chain
(4.7).

4.4.1.1 Related-Key Square Attack

This section presents a related-key attack [13] variant combined with the Square
attack. In general terms, a relate-key attack explores the internal structure of
the key schedule algorithm when several keys, with particular patterns, are
successively processed.

In the Square attack on IDEA the roles of plaintext and key are changed.
This is possible because both plaintext and key words are partitioned into 16-
bit values. For instance, assume a multiset in which all the plaintext words are
passive, but two consecutive key words are active. More specifically that means
216 user-defined keys in which Z

(2)
1 and Z

(2)
2 are active (contain arbitrary per-

mutations), and the other user-defined key words are passive. The key schedule
of IDEA implies that, across the 8.5 rounds, the seven key words Z

(2)
1 , Z

(2)
2 ,

Z
(3)
2 , Z

(4)
2 , Z

(5)
3 , Z

(6)
3 , Z

(8)
6 will also be active (Fig. 4.4). The following Λ-set
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Figure 4.5: 0.5R attack on 2.5-round PES using multiset chain (4.8).

chain results:

(P P P P ) → (P P P P ) → (? ? ? ?) . (4.7)

Chain (4.7) allows a 0.5R attack on 2.5-round IDEA. Since (Z(2)
1 , Z

(2)
2 ) are

active, the lsb7(Z
(3)
1 ) can be recovered by checking if (C(i)

1 ¯ (Z(3)
1 )−1)⊕ (C(i)

2 ¯
Z

(3)
2 ) is active. This amounts to 216+7 = 223 half-round IDEA decryptions. Also,

the fact that (C(i)
3 ¯ Z

(3)
3 )⊕ (C(i)

4 ¯ (Z(3)
4 )−1) is active can be used to discover

lsb9(Z
(3)
3 ) and the full Z

(3)
4 . In order to discard wrong 25-bit key candidates,

under 216 related-keys, two distinct plaintext multisets are used. This amounts
to 216+25 + 216+7 ≈ 241 half-round IDEA decryptions.

In total, 7+9+16=32 passive key bits are recovered. Another 32 key bits
are active. The remaining 64 passive key bits can be recovered by exhaustive
search, with 264 2.5-round IDEA computations.

Square attacks on PES are analogous to the ones on IDEA. The longest
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Λ-set chains obtained for PES are:

(P A P P ) → (A A A ∗) → (? ? ? ?), (4.8)

(P P P A) → (A ∗ A A) → (? ? ? ?). (4.9)

Both chains (4.8) and (4.9) can be used in a 0.5R attack on 2.5-round PES.
The first chain allows to recover Z

(3)
1 , Z

(3)
3 by observing that (C(i)

1 ¯ Z
(3)−1

1 )⊕
(C(i)

3 ¯ Z
(3)
3 ) is balanced (Fig. 4.5). The msb1(Z

(3)
3 ) cannot be uniquely deter-

mined. Similarly, Z
(3)
1 and Z

(3)−1

1 ¯ 0 are indistinguishable. In order to discard
wrong key candidates for (Z(3)

1 , Z
(3)
3 ), two Λ-sets are required. The attack com-

plexity is 217 chosen plaintexts, 217 blocks of memory, and 216·230+216·214 ≈ 246

half-round PES computations. Similar (4.9) can be used to recover 30 bits of
(Z(3)

2 , Z
(3)
4 ), with the same complexities. The remaining 68 key bits can found

by exhaustive search, leading to an overall time complexity of 268 2.5-round
PES computations.

A similar procedure applies for the improved Square attack using chains
(4.4) and (4.5) on 2.5-round PES.

A related-key Square attack on PES, also uses the Λ-set chain (4.7), and
makes subkeys Z

(2)
1 and Z

(2)
2 active. Plaintexts are passive, and after 2.5 rounds,

the msb7(Z
(3)
1 ) and the lsb9(Z

(3)
3 ) can be found by checking if (C(i)

1 ¯(Z(3)
1 )−1)⊕

(C(i)
3 ¯Z

(3)
3 ) is active. One plaintext multiset and 216 ·216 = 232 half-round PES

decryptions are needed. Moreover, Z
(3)
4 which is a passive subkey, can also be

determined, since (C(i)
2 ¯ (Z(3)

2 )−1)⊕ (C(i)
4 ¯ Z

(3)
4 ) is active. The complexity is

232 half-round computations. In total, 32 key bits are recovered, using 233 half-
round PES decryptions, and 217 chosen plaintexts. The remaining 64 passive key
bits can be found by exhaustive search, with 264 2.5-round PES computations.

Recently, Demirci [65] presented an improved square attack on IDEA, that
trades-off the number of chosen plaintexts for computing time, by exploring a
novel low-diffusion property of the least significant bits across the MA-box. This
attack is going to be discussed further in Chap. 5.

A summary of attacks on reduced-round IDEA and PES is listed in Table 4.2.

4.4.2 Square Attacks on Hierocrypt-L1 and Hierocrypt-3

Hierocrypt-L1 (HC-L1) [53] and Hierocrypt-3 (HC-3) [52] are SPN ciphers that
have a word-wise structure similar to the AES [61] in the sense that all opera-
tions are performed on 8-bit words. More details on these ciphers can be found
in Appendix A. The Square attacks to be described further employ multisets
of 232 texts because smaller word sizes did not demonstrate the same effec-
tiveness. In the terminology of (Knudsen [125]), these multisets correspond to
fourth-order integrals. The contribution of this section are based on [8].
Every 8-bit data in HC-3 and HC-L1 can be considered as an element of the finite
field GF(28)/(x8 +x6 +x5 +x+1) which will be denoted further simply GF(28).
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Table 4.2: Attack complexities on reduced-round IDEA and PES.

Cipher Attack # Rounds Time Data Source
IDEA Differential 2 242 210 [159]

Demirci 2 264 23 [65]
Differential 2.5 232 210 [57]
Related-Key Square 2.5 264 217.5 (4.7)
Square 2.5 264 249.5 (4.6)
Square 2.5 268 218 (4.2)+(4.3)
Demirci 2.5 281 55 [65]
Differential 2.5 2106 210 [159]
Differential-Linear 3 244 229 [40]
Demirci 3 271 71 [65]
Demirci 3 282 233 [65]
Imposs. Differential 3.5 253 238.5 [19]
Trunc. Differential 3.5 267 256 [43]
Demirci 3.5 282 234 [65]
Demirci 3.5 2103 103 [65]
Imposs. Differential 4 270 238.5 [19]
Demirci 4 2114 234 [65]
Imposs. Differential 4.5 2112 264 [19]

PES Square 2.5 268 218 (4.8)+(4.9)
Related-Key Square 2.5 264 217 (4.7)

Attacking Reduced-Round Hierocrypt-3. An observation on the structure of the
XS transformation in HC-3 is that an equivalent representation of an XS-box
can be obtained by moving up the lower subkey layer to the input of the MDSL

matrix. This transformation creates an equivalent subkey layer. More formally,
let the input to MDSL be denoted by X = (x1, x2, x3, x4) ∈ GF(28)4 and its
output by Y = (y1, y2, y3, y4) ∈ GF(28)4. Let K = (k1, k2, k3, k4) ∈ GF(28)4

be the subkey used in the lower subkey layer. The equivalent lower subkey layer
is computed by multiplying the original subkey by the MDS−1

L transform:

MDS−1
L =




82x C4x 34x F6x
F6x 82x C4x 34x
34x F6x 82x C4x
C4x 34x F6x 82x




For example, the equivalent most significant input to MDSL is given by: x1 =
82x ·(y1 ⊕ k1) ⊕ C4x ·(y2 ⊕ k2) ⊕ 34x ·(y3 ⊕ k3) ⊕ F6x ·(y4 ⊕ k4). It means, for
instance, that the most significant subkey byte of the equivalent lower subkey
layer is ek1 = 82x ·k1 ⊕ C4x ·k2 ⊕ 34x ·k3 ⊕ F6x ·k4.

A square attack on six S-box layers of HC-3 will be described which corre-
sponds to a reduced-round version of HC-3 consisting of two rounds plus the
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output transformation (Fig. 4.6). In this version, there are three XS-box layers,
which means six layers of the 8-bit S-box. The attack considers the nested struc-
ture as a black box and views the XS transform as the application of four keyed
XS-boxes mapping GF(28)4 onto itself. The attack starts by selecting a Λ-set
of 232 plaintexts that have a fixed (passive) value for three out of four 32-bit
words, while the fourth word takes all 232 possible values (active). The position
of the active word is not important. After the first round, all four 32-bit words
are active (see [52], p. 5, Sect. 2.2.3).

After the second round the integral of the Λ-set at each word position is
zero (each word position is balanced). Since the round subkeys are fixed, the
words remain balanced after the addition with the upper round subkey of the
third round (which is actually part of the output transformation). The attack
proceeds by considering the ciphertexts. By guessing some bits of the last
subkey layer, one can partially decrypt up to the output of the second round
and check whether the integral is zero. For the correct guess of the subkey
bits, the distinguisher based on the zero integral will always hold, while for
wrong guesses the property will not hold with high probability. The following
observation leads to a significant reduction of the attack complexity. Since the
exclusive-or operation does not mix bits from different positions in the words,
a 32-bit word being balanced implies all b-bit sub-blocks, 1 ≤ b < 32, will also
be balanced. As a consequence, after the second round every byte is balanced
and subkeys can be attacked byte-wise.

Next, starting at the output, 32 subkey bits that are added to one word
in the output transformation are guessed, thus recovering the output from an
XS-box. Looking at the inner structure of an XS-box, the lower S-boxes can be
inverted. Further, the attacker can move up to the lower subkey layer, guess
one byte of the equivalent subkey, undo the key addition and the upper S-box
for one byte and verify the integral value.

Overall 40 subkey bits are recovered. Since the integral is being tested for
one byte, its is expected that one out of about 28 wrong keys will pass the test.
Repeating the attack with six Λ-sets, a wrong subkey will result in integral equal
to zero with probability (2−8)6 = 2−48. Since 240 subkeys are tried, it is likely
that only the correct one is left.

At first it would seem that the 240 key guessing steps should be repeated
for each of the 232 plaintexts in a Λ-set, with a resulting complexity of 272 S-
box lookups per Λ-set. However, the partial-sum technique of Ferguson et al.
[74] provides a more efficient way to organize the key recovery computation.
The partial-sum technique is a dynamic programming technique that reduces
the computational complexity of square attacks by trading computational effort
for storage and reorganizing the intermediate computations. At the modest
cost of 224 extra bits, it reduces the total attack complexity to 5 · 248 S-box
lookups per Λ-set. Therefore, the complexity of the attack on six S-box layers
becomes 6 · 232 ≈ 234.5 chosen plaintexts (six Λ-sets) and 6 · 5 · 248 ≈ 253 S-box
lookups. Using the fact that six S-box layers contains 96 S-box lookups, the
time complexity corresponds to about 253/27 = 246 2.5-round computations.

Attacking Seven S-box Layers of HC-3. Attacking seven S-box layers of HC-3
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Figure 4.6: Square attack on 2.5-round Hierocrypt-3.
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is effective only for 192-bit and 256-bit keys. The strategy consists in guessing
the first subkey (128 key bits) layer in an XS-box, and simply apply the previous
attack on six S-box layers. The computational effort becomes 2128+40 = 2168

subkey guesses. As 28 wrong subkeys will be discarded per guess, and 168 subkey
bits are guessed at a time, the number of chosen plaintexts required to assure
that only the correct subkey survives the filtering is ( 168

8 + 1) · 232 = 22 · 232 ≈
236.5. By applying the partial sum technique, the overall complexity becomes
22 · 5 · 248+128 ≈ 2183 S-box lookups, or 2183−7 = 2176 2.5-round computations.
The remaining 192 − 168 = 24 or 256 − 168 = 88 key bits can be recovered by
exhaustive search.

Attacking Hierocrypt-L1. The best known attack against HC-L1 was due to
the cipher designers ([51], p. 8, Table 4) and could break five S-box layers at
the cost of 272 subkey guesses using 232 chosen plaintexts. The same attack,
described previously for HC-3, works against six S-box layers of HC-L1 with the
same requirements of about 253 S-box lookups and 6 · 232 chosen plaintexts.

Attacking Seven S-box Layers of HC-L1. The square attack on seven S-box
layers consists in guessing the last subkey (64 key bits) and apply the previous
attack on six S-box layers. The computational effort becomes 264+40 = 2104

subkey guesses. As 28 wrong subkeys will be discarded per guess, and we guess
104 subkey bits at a time, the number of chosen plaintexts required to ensure
that only the correct subkey survives the filtering is ( 104

8 + 1) · 232 = 14 · 232.
By applying the partial sum technique, the overall complexity becomes 14 · 5 ·
248+64 ≈ 2118 S-box lookups, or 2118−6 = 2112 3.5-round computations.

Complexities of square attacks against reduced-round versions of Hierocrypt-
3 are summarized in Table 4.3. The improved attacks work also for Hierocrypt-

Table 4.3: Square attack requirements for Hierocrypt-3

Source # S-box Layers Data Memory Time
[50] 4 211 small 244

[50] 5 213 213 2174

ours 6 234.5 234.5 246

ours 7 236.5 236.5 2176

L1, with the appropriate changes due to the block size, and the results are
summarized in Table 4.4. In contrast to the square attack on IDEA and PES,
the attacks on Hierocrypt-3 and Hierocrypt-L1 did not explore the key schedule
algorithms. However, the square attack works independent of the key setup
procedure.

4.4.3 Square Attacks on Skipjack

The contributions of this section come from [173], from which only the best
results are described.

Skipjack is a unbalanced Feistel cipher [204] with 64-bit blocks, 80-bit keys,
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Table 4.4: Square attack requirements for Hierocrypt-L1 (all key sizes).

Source # S-box Layers Data Memory Time
[51] 4 211 small 240

[51] 5 232 232 272

ours 6 234.5 234.5 246

ours 7 236 236 2112

and iterating 32 rounds of two types [183]. Further details about Skipjack and
its key schedule algorithm can be found in Appendix D.

Although Skipjack is a byte-oriented cipher, the word size for the Square
attacks was selected as n = 16 because smaller word sizes did not retain the
property of balanced words for as many rounds (Fig. 4.7). Exhaustive analysis
of all 256 patterns of plaintext Λ-sets consisting of 8-bit active/passive words
indicated that the longest Λ-set chain can cover six Rule-A rounds:

(P P A P P P P P ) A→ (P P A P P P P P ) A→ (P P A P P P P P ) A→
(P P A P P P P P ) A→ (∗ ? ∗ ? P P P P ) A→ (? ? ∗ ? P P ? ?) A→

(? ? ∗ ? ? ? ? ?) A→ (? ? ? ? ? ? ? ?) . (4.10)

Moreover, the Square attack is independent of the F-table, or it inverse. There-
fore, the word size was chosen as 16 bits. In the terminology of [125] this
word size corresponds to a 2nd-order integral. A note on terminology: let
(P i

1, P
i
2, P

i
3, P

i
4), with P i

j ∈ ZZ16
2 , 1 ≤ j ≤ 4, 0 ≤ i < 216, be the plaintext

blocks in a Λ-set. A plaintext Λ-set is an input multiset to Skipjack, and a
ciphertext Λ-set is the corresponding output multiset. Let (Ci

1, C
i
2, C

i
3, C

i
4) de-

note the corresponding ciphertext blocks in the output Λ-set. The notation
(X1 X2 X3 X4)

A→ (Y1 Y2 Y3 Y4), with Xi, Yi ∈ {A,P, ∗, ?}, 1 ≤ i ≤ 4, de-
notes that the Λ-set with word status (X1 X2 X3 X4) results in the Λ-set with
word status (Y1 Y2 Y3 Y4) after one Rule-A round, with probability one. Analo-
gously, for a Rule-B round. Multiple-round Λ-sets, in a chain, like for example,
X

A→ Y
A→ Z will denote a shortcut notation for X

A→ Y and Y
A→ Z. Usually,

Λ-sets are applied to the first Rule-A round of Skipjack, but some attack variants
may start at an arbitrary round. These variants explore the different diffusion
properties of Rule-A and Rule-B rounds. The exact starting round for an attack
might become clear from the context.

Chosen-Plaintext Square Attacks. The longest Λ-set chains found for reduced-
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Figure 4.7: Propagation of active 8-bit words across Gi.

round variants of Skipjack, is the following:

(P P A A) A→ (P P A A) A→ (P P P A) A→ (P P P A) A→ (P P P A) A→
(P P P A) A→ (P P A A) A→ (P A A A) A→ (A A A A) B→ (A P A A) B→

(∗ P A A) B→ (∗ P A ∗) B→ (∗ P A ∗) B→ (? ∗ A ∗) B→ (? ∗ A ?) B→
(? ∗ A ?) B→ (? ? ∗ ?) A→ (? ? ∗ ?) A→ (? ? ? ?) . (4.11)

The Λ-set chain (4.11) can be used in a 1R attack on the first 18 rounds
of Skipjack. Similar to the attack on IDEA, this approach uses particular per-
mutations for the active words in order to extend the propagation of balanced
words further in the cipher. In this case, P i

3 contains an instance of G1 with a
guessed value for k4, k5, k6, k7, while P i

1 = P i
2 = 0. Since G1 is a permutation,

the output is always active: P i
3 = G1(i), 0 ≤ i ≤ 216−1. The same permutation

to P i
3 is also input to P i

4, but xored to a 16-bit value, intended to match G0(P i
1).

When the correct values for k4, k5, k6, k7 and for G0(P i
1) are found, the plaintext

values have the form P i = (0, 0, G1(i), i⊕G0(0)⊕1), and the third output word
of the second round will become G1(i) ⊕ 2 ⊕ G1(i) = 2, that is, passive. The
correct guesses for the four key bytes and G0(0) can be verified by checking if
Ci

3⊕Ci
4 is balanced. The attack guesses 32 key bits (plus 16-bit key related data)

and requires four plaintext Λ-sets (first 18-rounds in Fig. 4.8). The attack com-
plexity is equivalent to 216 ·248 ·2−5+216 ·232 ·2−5+216 ·216 ·2−5+216 ·2−5 ≈ 259
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Skipjack encryptions.2 The remaining 32 key bits can be found by exhaustive
search.

A variant 2R attack on 19 rounds additionally recovers key bytes k2 and
k3 and checks if G−18(Ci

3) ⊕ Ci
4 is balanced. This attack at both extremes of

the cipher discovers 32 + 16 = 48 key bits directly plus 16-bit key-related data,
and requires five plaintext Λ-sets to avoid false alarms. The time complexity is
equivalent to 216·264·2−5+216·248·2−5+216·232·2−5+216·216·2−5+216·2−5 ≈ 275

Skipjack encryptions (Fig. 4.8). The remaining 16 key bits can be found by
exhaustive search.

Another Square attack on reduced-round Skipjack uses the chain:

(P A A P ) A→ (P A A P ) A→ (P A A P ) A→ (P P A P ) A→ (P P A P ) A→
(P P A P ) A→ (P P A P ) A→ (P A A P ) A→ (A A A P ) B→ (A P A P ) B→
(A P A P ) B→ (A P A A) B→ (A P A A) B→ (A A A A) B→ (∗ A A A) B→

(∗ A A ∗) B→ (∗ A ∗ ∗) A→ (? A ∗ ?) A→ (? A ? ?) A→ (? ? ? ?) (4.12)

The Λ-set chain (4.12) can be used in a 1R attack on the first 19 rounds of
Skipjack. The attack sets P i

2 = G2(i) ⊕ c, 0 ≤ i ≤ 216 − 1, c ∈ ZZ216 , P i
3 = i.

The 16-bit value c is intended to match G1(G0(0))⊕ 2. The passive words are
set to: P i

1 = 0, P i
4 = 1. Key bytes k8, k9, k0, k1 and a 16-bit key-dependent

value G1(G0(0)) ⊕ 2 are to be discovered, totaling 4*8+16=48 bits. When all
these 48 key-related bits are guessed correctly the input to the second word
in the fourth round will be G2(G1(G0(0)) ⊕ 2) ⊕ G2(2 ⊕ G1(G0(0))) ⊕ 3 =
3, and the second output word of the 18th round will be active (Fig. 4.9).
Using four Λ-sets to avoid false alarms, the time complexity is equivalent to
216 ·248 ·2−5 +216 ·232 ·2−5 +216 ·216 ·2−5 +216 ·2−5 ≈ 259 Skipjack encryptions.

By guessing additionally k6 and k7, a 4R attack can be accomplished on
the first 23 rounds of Skipjack. When the correct values of k6, k7, k8, k9,
k0, k1 and G1(G0(0)) ⊕ 2 are found, and the value G−19(C1

2 ⊕ Ci
3) is guessed

correctly, the attacker can discover the second output word from the 19th round
by computing G−19(Ci

2⊕Ci
3)⊕G−22(Ci

3)⊕Ci
4 and check that it is active. In total,

64 key-related bits are searched for. In order to filter wrong key candidates, five
plaintext Λ-sets are required. The complexity is equivalent to 216 · 264 · 2 · 2−5 +
216 · 248 · 2 · 2−5 +216 · 232 · 2 · 2−5 + 216 · 216 · 2 · 2−5 +216 · 2 · 2−5 ≈ 276 Skipjack
encryptions.

Chosen-Ciphertext Square Attacks. Since Skipjack uses two kinds of round
structure, Rule-A and Rule-B, the encryption and decryption schemes are asym-
metric. The following attacks assume that Skipjack is being used in decryption
mode, and assume the adversary is able to make chosen-ciphertext queries. One

2Assuming 32 rounds of Skipjack are equivalent to 25 Gi evaluations.
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of the longest Λ-set chains found is:

(A P P P ) B−1

→ (A P P P ) B−1

→ (A P P P ) B−1

→ (A P P P ) B−1

→
(A A P P ) B−1

→ (A A A P ) B−1

→ (A A A A) B−1

→ (∗ A A A) B−1

→
(? ? A A) A−1

→ (A ? A A) A−1

→ (A ? A A) A−1

→ (A ? ∗ A) A−1

→
(A ? ∗ ∗) A−1

→ (? ? ∗ ∗) A−1

→ (? ? ∗ ∗) A−1

→ (? ? ∗ ?) A−1

→
(? ? ∗ ?) B−1

→ (? ? ? ?) . (4.13)

A 1R attack on 18 inverse rounds of Skipjack (eight Rule B−1 rounds, eight Rule
A−1 rounds and two Rule B−1 rounds) uses the Λ-set chain (4.13). The attack
uses ciphertext Λ-sets of the form (i, 0, 0, 0), for 0 ≤ i ≤ 216 − 1, and recovers
key bytes k6, k7, k8, k9 by checking if G−14(P i

3)⊕P i
2 is balanced (first 18 rounds

in Fig. 4.10). To discard false 32-bit subkey candidates, three Λ-sets are used.
The time complexity is equivalent to 216 · 232 · 2−5 + 216 · 216 · 2−5 + 216 · 2−5 ≈
243 Skipjack decryptions. The remaining 48 key bits can be determined by
exhaustive search, resulting in a complexity of 248 Skipjack computations.

A 2R attack on 21 round of Skipjack in decryption mode, using (4.13), can
discover key bytes k4, k5, k6, k7, k8, k9, by checking if P i

1⊕G−11(P i
2)⊕G−14(P i

2⊕
P i

3) is balanced. To discard false 48-bit subkey candidates four ciphertext Λ-sets
are used. The complexity is equivalent to 216 · 248 · 2 · 2−5 + 216 · 232 · 2 · 2−5 +
216 · 216 · 2 · 2−5 +216 · 2 · 2−5 ≈ 260 Skipjack decryptions. The remaining 32 key
bits can be determined by exhaustive search.

Related-Key Square Attacks. Following similar ideas as in the Square attack
on IDEA, a related-key Square attack on Skipjack operates with passive plain-
text Λ-sets, but will assume that some key bytes are active. Analysis of such
attacks with Λ-sets of size 28 (8-bit words) indicate that with only one subkey
byte (k9) active, the longest chain of key Λ-sets covers only the six initial rounds
of Skipjack. One example makes only the key byte k9 (the last key byte) active
and results in the chain:

(P P P P P P P P ) A→ (P P P P P P P P ) A→ (P P P P P P P P ) A→
(P P A ∗ A ∗ P P ) A→ (? ? ? ? A ∗ P P ) A→ (? ? ? ? A ∗ ? ?) A→

(? ? ? ? ? ? ? ?) A→ (? ? ? ? ? ? ? ?) A→ (? ? ? ? ? ? ? ?) . (4.14)

Chain (4.14) allows a 3R attack on the 9 initial rounds of Skipjack (Fig. 4.11).
The attack guesses the key bytes k4, k5, k6, k7, and determines if G−6(Ci

3)⊕Ci
4

has the form A∗, that is, the left-half of a 16-bit word is active and the right-half
is balanced, to find the correct 32-bit key of the 7th round. The complexity is 28

related-keys, 3·28 chosen plaintexts, and 28 ·232 ·2−5+28 ·216 ·2−5+28 ·2−5 ≈ 235

Skipjack encryptions.
Another related-key attack makes (k8, k9) simultaneously active, and uses
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16-bit words. The Λ-set chain is:

(P P P P ) A→ (P P P P ) A→ (P P P P ) A→ (P A A P ) A→ (A A A P ) A→
(? A A ?) A→ (? A ? ?) A→ (? ? ? ?) A→ (? ? ? ?) . (4.15)

Chain (4.15) allows a 5R attack on the initial 12 rounds of Skipjack to
discover key bytes k4, k5, k6, k7 (Fig. 4.12). The key Λ-set has all key bytes
fixed, except k8 and k9, which jointly range over 0 . . . 216 − 1. The attack
requires 216 related-keys, three Λ-sets, and proceeds by guessing a 32-bit key
value by checking if G−4(G−11(Ci

2)) is active. The complexity is equivalent to
216 · 232 · 2 · 2−5 + 216 · 216 · 2 · 2−5 + 216 · 2 · 2−5 ≈ 244 Skipjack encryptions.

Table 4.5: Attack complexities on reduced-round Skipjack.

# Rounds Attack Data Time Source
(start–end) (Chosen Texts)
16 (1 – 16) Differential 222 222 [17]
16 (1 – 16) Yoyo game 217 216 [17]
31 (2 – 32) Imposs. Diff. 234 278 [18]
31 (1 – 31) Imposs. Diff. 241 278 [18]
16 (1 – 16) Trunc. Diff. 217 234 ∼ 249 [124]
16 (9 – 24) Trunc. Diff. 2 247 [124]
25 (4 – 28) Boomerang 234.5 261.5 [124]
28 (4 – 32) Trunc. Diff. 241 277 [124]
18 (5 – 22) Saturation 217 244 [95]
22 (5 – 26) Saturation 218 276 [95]
23 (5 – 27) Saturation 218 3 · 275 [95]
22 (1 – 22) Saturation 249 244 [95]
26 (1 – 27) Saturation 250 276 [95]
27 (1 – 27) Saturation 250 3 · 275 [95]
18 (1 – 18) Square 4 · 216 259 (4.11)
19 (1 – 19) Square 5 · 216 275 (4.11)
19 (1 – 19) Square 4 · 216 259 (4.12)
23 (1 – 23) Square 5 · 216 276 (4.12)
18 (14 – 32) Square 3 · 216 248 (4.13)
21 (11 – 32) Square 4 · 216 260 (4.13)
9 (1 – 9) Related-Key Square 3 · 28 235 (4.14)
12 (1 – 12) Related-Key Square 3 · 216 244 (4.15)

Table 4.5 compares previous attacks made on Skipjack with the results ob-
tained from the Square attacks. It is not straightforward to compare the Square
and other attacks since each one applies to different sections of Skipjack. The
Square attack on the first 23 rounds of Skipjack, that achieves the largest num-
ber of rounds is roughly comparable to the Saturation attack on the same num-
ber of rounds, but from the 5th until the 27th rounds. A common feature of
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all listed attacks is the analysis of the diffusion properties of different parts of
Skipjack due to the interaction of the two kinds of rounds.

4.5 The Impossible Differential Attack

This section describes a cryptanalytic technique, related to the differential crypt-
analysis technique, that dates back to the works of Borst et al. [43], Biham et al.
[18], and Knudsen [116]. In a conventional DC attack, characteristics or differ-
entials of high probability are searched for in order to distinguish a cipher from
a random permutation, and to eventually mount a key-recovery attack. In such
attacks, subkey bits are guessed in rounds surrounding the differential. The sub-
keys which, after partial encryption/decryption, are most (or sometimes, least)
often suggested by the differential are taken to be the correct values. The new
technique described by Biham et al., on the contrary, searches for differentials
that suggest values that never happen, namely, with probability zero. In a key-
recovery attack variant, if a candidate subkey value leads to the conclusion that
a text pair satisfies this differential, then the subkey is certainly wrong. This
procedure is called sieving, and finds the correct subkey by eliminating all the
other subkeys that lead to a contradiction. Notice that it implies that the S/N
ratio (Def. 4.7) of this counting scheme is S/N= 0, since the right subkey is
never suggested; only the wrong subkeys are suggested. These differentials with
probability zero are called impossible differentials and the associated technique
Impossible Differential (ID) cryptanalysis. In [116], Knudsen independently de-
scribed the same method on DEAL, an r-round (r ≥ 6) Feistel cipher that uses
the DES as the round function.

One technique to construct impossible differentials is called miss-in-the-middle.
It consists in combining two differentials, each holding with probability one, but
which cannot be simultaneously satisfied. Their combination, therefore, leads to
a contradiction. Once such combination is discovered, it can be used as a distin-
guisher for discarding wrong subkeys, and to find the correct one by elimination.
Another search approach also suggested by Biham et al. in [18] is based on the
overall structure of a cipher. The procedure to find impossible differentials is to
encrypt many plaintext pairs, under all possible keys, and discard all the differ-
ences that result, because these are not impossible. Therefore, by elimination
(sieving again) only differentials that never occur will be left. This search for
general impossible differentials nonetheless, requires too many differentials and
keys to try exhaustively. Biham et al. suggested the use of truncated differen-
tials in which differences are defined word-wise3 and only the zero or non-zero
difference status is important. As a consequence, the number of text differences
are reduced to the number of combinations of zero/non-zero word-wise differ-
ences. Nonetheless, one may not encounter differentials in which an input pair
results in outputs having zero difference within word boundaries. To solve both
problems, it was suggested to analyze scaled-down cipher variants, in which the
nature of the cipher components and its overall structure are preserved, but the

3In word-oriented ciphers, such as Rijndael, Square and Skipjack.
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size is reduced in order to allow an exhaustive search for impossible differentials.
To preserve the nature of a cipher component means for instance, that (large)
permutations are substituted by (smaller) permutations, (big) functions are re-
placed by (smaller) functions, and similarly for linear transformations and other
operations (for example, the SAFER-32 cipher in Appendix C). This technique
is called shrinking.

Impossible differential attacks have been applied to several ciphers, both
with Feistel and SPN structure, such as Skipjack [18], IDEA and Khufu [19],
Twofish [21], Misty [130], Rijndael [22], and Crypton [207].

Impossible differential attacks will be described in the following, on reduced-
round variants of SAFER ciphers (Appendix C contains a more detailed descrip-
tion of these ciphers). These attacks are the main contribution of this section,
and are based on [171]. All the attacks apply the miss-in-the-middle technique.

The notion of difference used in the impossible differential attacks on SAFER
ciphers is the following:

X ′ = ∆X = (X −X∗) mod 256 .

This difference operator was chosen because it allows many differentials to prop-
agate across the PHT layers of the SAFER ciphers with probability one. The
ID attacks distinguish only zero from non-zero differences in a similar approach
as used by Knudsen in [119] (the exact value of the non-zero differences is not
important). The attacks exploit the fact that some round subkey bytes can be
mapped to the same user key bytes via in the key schedule algorithms, so that
the key-recovery effort can be reduced. Even though the key bytes are individu-
ally rotated and added with known constants, there is little interaction between
subkey bytes. This has two consequences: first, once a subkey byte that is not
the parity byte is guessed, it can be mapped directly to a user key byte (key
reconstruction); second, if the same subkey byte (or a rotated instance) is to be
recovered at both ends of the cipher, the complexity of key-recovery decreases
because there are less subkey bytes to search for.

4.5.1 Impossible Differential Attack on SAFER SK

This section describes an ID attack on the SAFER SK ciphers. The impossible
differential is composed of the following differentials, each of which holding
with probability one: the first one has difference (a, 0, 0,−a, b, 0, 0,−b), where
a, b 6= 0, at the input to the ADD/XOR key-mixing layer of the first round, and
causes the difference (6a + 3b, 3a + 3b, 2a + b, a + b, 2a + b, a + b, 0, 0) after the
PHT layer; the second differential has input difference (0, c,−c, 0, 0, d,−d, 0) at
the output of the XOR/ADD key-mixing layer of the third round, and causes (in
the decryption direction) the difference (0, e, 0, f, g, 0, h, 0), with e, f, g, h 6= 0.

The impossible differential therefore, has input difference (a, 0, 0, −a, b, 0,
0, −b), with a, b 6= 0, at the input to the ADD/XOR key-mixing layer of the
first round and cannot result in output difference (0, c,−c, 0, 0, d,−d, 0), with
c, d 6= 0 after the XOR/ADD key-mixing layer 1.75 rounds further (Fig. 4.13).
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The contradiction arises in four output byte differences of the first differential.
Three of them are non-zero, and the corresponding bytes from the second dif-
ferential (propagating from the decryption direction) are zero. This 1.75-round
impossible differential is placed between two NL layers, so that subkey bytes
applied before or after the non-zero differences can be recovered. Thus, the
attack covers 2.75 rounds.
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Figure 4.13: Impossible differential attack on 2.75-round SAFER SK.

The attack proceeds as follows. Choose a structure of 232 plaintexts, with
identical 2nd, 3rd, 6th and 7th bytes, and all possibilities for the 1st, 4th,
5th, and 8th bytes. There are about 232 · (232 − 1)/2 ≈ 263 plaintext pairs
with difference (P ′1, 0, 0, P ′4, P

′
5, 0, 0, P ′8), with P ′1, P ′4, P ′5, P ′8 6= 0 in such a

structure. Collect about 231 pairs with ciphertext difference zero in the 1st,
4th, 5th and 8th bytes. For each such pair try all 232 possible subkeys K1

1 ,
K4

1 , K5
1 , K8

1 and encrypt partially P1, P4, P5, P8 (the corresponding bytes of
the two plaintexts in the pair) across the NL layer. Collect about 216 possible
32-bit subkeys satisfying the non-zero differences (a, 0, 0,−a, b, 0, 0,−b) at the
input to the ADD/XOR subkey layer. This can be done in 210 time and 29

memory complexity. Try all 232 subkeys K2
6 , K3

6 , K6
6 , K7

6 in each of the two
ciphertexts of the pair. Collect about 216 32-bit subkeys that result in difference
(0, c,−c, 0, 0, d,−d, 0). This can be done in 210 time, and 29 memory. Make a
joint list of 232 56-bit subkeys (K1

1 , K4
1 , K5

1 , K8
1 , K2

6 , K6
6 , K7

6 ) from both ends
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(notice that K3
6 = (K8

1 ≪ 7) ¢ B3
6 from the key schedule).

These subkeys cannot be the correct values because they lead to a pair of
the impossible differential. Each pair suggests a list of about 232 incorrect 56-
bit subkeys. There are about 231 pairs per structure. Using one structure,
the expected number of wrong subkeys remaining is: 256(1− 232

256 )2
31

= 256(1−
2−24)2

31 ≈ 256 · e−128 ≈ 2−128.66. So, the correct subkey can be uniquely
identified. The 231 pairs correspond to 232 chosen plaintexts. The memory
complexity is 250 blocks, dominated by the sieving effort. The time complexity
is equivalent to 231 · (210 + 210) ≈ 242 half-round SAFER SK-64 computations.
The remaining 64-56 = 8 key bits can be recovered by exhaustive search.

In the case of SAFER SK-128, the eight subkey bytes searched correspond
to different user-defined key bytes (according to the key schedule). Using 27

structures, the number of remaining wrong subkeys is: 264(1 − 232

264 )2
31·27

=
264(1 − 2−32)2

32·26 ≈ 264 · e−64 ≈ 2−28.33. The 231 · 27 = 238 pairs correspond
to 27+32 = 239 chosen plaintexts. The memory complexity is about 258 blocks
due to the sieving effort. The time complexity is equivalent to 231+7 · 211 =
249 half-round SAFER SK-128 computations. The remaining 128-64=64 user-
defined key bits can be computed by exhaustive search, resulting in a final time
complexity of 264 2.75-round SAFER SK-128 computations.

An alternative ID attack on 3.75-round SAFER SK-64 consists in guessing
the subkeys in an additional half-round at the top and at the bottom of 2.75-
round SAFER SK-64. The attack starts after the first half-round, with the
key-mixing layer of Ki

2 subkeys, and finishes at the output transformation with
subkeys Ki

9, 1 ≤ i ≤ 8 (Fig. 4.14).
Due to the difference operator, only the xor-combined subkey bytes are re-

covered. From the key schedule of SAFER SK-64, the subkeys Ki
2, i ∈ {2, 3, 6, 7}

and Ki
9, i ∈ {1, 4, 5, 8} can be mapped to the same user key bytes: K3, K4, K7,

K8. The attack steps are:

• Guess either the subkeys (K1
9 ,K4

9 ,K5
9 ,K8

9 ) or (K7
2 ,K2

2 ,K3
2 , K6

2 ), to en-
crypt the top half-round and decrypt the bottom half-round of 3.75-round
SAFER SK-64.

• For each 32-bit subkey guess, and for each structure in an attack on 2.75
rounds, find all pairs with zero difference in the 1st, 4th, 5th, 8th bytes at
the output of the third round.

• Given K2
2 , the value of K1

3 is known as (K2
2 ≪ 6) ¢ b1

3. Then K3
4 can be

found such that it results in the same difference after the NL layer of the
2nd round. Similarly, given K8

9 (or K6
2 ), the value of K5

3 is determined.
Then K8

3 can be found such that it causes the same difference after the
NL layer of the 2nd round. On average, only one value of K3

4 and one
value of K8

3 might be suggested per pair.

• Obtain about 28 16-bit subkey values (K2
8 , K3

8 ) that cause the same dif-
ference before the NL layer of the 3rd round. In total, 232 candidates for
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Figure 4.14: Impossible differential attack on 3.75-round SAFER SK.

the 40 subkey bits (K4
3 ,K8

3 ,K7
8 ,K2

8 , K3
8 ) are suggested per pair, and these

values are impossible. After one structure, the remaining wrong subkey
candidates are: 240 ·(1− 232

240 )2
31

= 240 ·(1−2−8)2
31 ≈ 240 ·e−223 ≈ e−8388580.

So, only the correct subkey candidate remains.

The attack requires one text structure, namely, 232 chosen plaintexts. Time
complexity is 2 · 232 · 232 = 265 half-round computations which is equivalent to
about 262 3.75-round computations. Data complexity is 240 blocks for the union
of lists of impossible subkey candidates (sieving).

4.5.2 Impossible Differential Attack on SAFER+/128

This section describes an impossible differential attack on SAFER+ with a 128-
bit user key. The impossible differential consists of the following differentials,
each holding with probability one: the first one has input difference (a, 0, 0,
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b, c, 0, 0, −b, d, 0, 0, −d, −a, 0, 0, −c), with a, b, c, d 6= 0, at the input to
the ADD/XOR key-mixing layer of the first round, and causes the difference
(−2a− 4c, 0,−a + c + 12d,−a + b + 6d, 15a− 2b + 3c− d, 7a− b + c− d,−2a−
6b + 3c + d,−3a− 3b + c + d, 3a + 2b + 14c, a + b + 6c, 7b− c + 3d, 3b + 3d,−a−
b − c − 4d,−b − 2d,−12a − 2c + 2d,−4a + d) at the output of the PHT layer
of the first round; the second differential has difference (0, e, f , 0, 0, −g, e, 0,
0, h, −f , 0, 0, g, h, 0) at the output of the XOR/ADD key-mixing layer of the
third round and causes (in the decryption direction) the difference (i, j, k, l,
m, n, o, p, q, r, s, t, u, v, w, x), with i, j, k, l,m, n, o, p, q, r, s, t, u, v, w, x 6= 0,
at the input to the second round (Fig. 4.15).
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Figure 4.15: Impossible differential attack on 2.75-round SAFER+.

Therefore, the impossible differential with input difference (a, 0, 0, b, c, 0,
0, −b, d, 0, 0, −d, −a, 0, 0, −c) cannot cause the output difference (0, e, f , 0,
0, −g, e, 0, 0, h, −f , 0, 0, g, h, 0) after 1.75 rounds. The contradiction arises
in one byte difference: the 2nd output byte difference from the first differential
is always zero, while the corresponding byte of the second differential is always
non-zero (because 15g ≡ 0 mod 256 ⇔ g = 0). This 1.75-round impossible
differential is placed between two NL layers, so that subkeys after non-zero byte



4.5. THE IMPOSSIBLE DIFFERENTIAL ATTACK 97

differences at both ends can be recovered.
Thus, the attack covers 2.75 rounds. The attack proceeds as follows. Choose

a structure of 264 texts with P2, P3, P6, P7, P10, P11, P14, P15 set to fixed
values, and with all possible values for P1, P4, P5, P8, P9, P12, P13, P16. There
are about 264 · (264 − 1)/2 ≈ 2127 pairs in such a structure. Collect about
2127 · 2−64 = 263 pairs that have difference zero in the 1st, 4th, 5th, 8th, 9th,
12th, 13th, and 16th bytes of the ciphertext difference. For each pair, try
all 264 possible subkeys K1

1 , K4
1 , K5

1 , K8
1 , K9

1 , K12
1 , K13

1 , K16
1 , and partially

encrypt the corresponding plaintext bytes across the first NL layer. Collect
about 232 64-bit subkeys satisfying the difference (a, 0, 0, b, c, 0, 0, −b, d, 0,
0, −d, −a, 0, 0, −c) after the first NL layer. This can be done in 4 · 210 time
and 4 · 28 memory complexity. Try all 264 possible subkeys K2

6 , K3
6 , K6

6 , K7
6 ,

K10
6 , K11

6 , K14
6 , K15

6 and decrypt the corresponding bytes in each ciphertext
of the pairs across one NL layer. Collect about 232 64-bit subkeys that result
in difference (0, e, f , 0, 0, −g, e, 0, 0, h, −f , 0, 0, g, h, 0) at the input
to the 3rd NL layer. This can be done in 4 · 210 time and 4 · 28 memory.
Make a list of 264 104-bit subkeys K1

1 , K4
1 , K5

1 , K8
1 , K9

1 , K12
1 , K13

1 , K16
1 , K2

6 ,
K6

6 , K10
6 , K14

6 , K15
6 that result from the previous steps. Due to the tweaked

key schedule of SAFER+, K3
6 = (K8

1 ≪ 7) ¢ B3
6 , K7

6 = (K12
1 ≪ 7) ¢ B7

6 ,
K11

6 = (K16
1 ≪ 7) ¢ B11

6 , for a 128-bit user key. These subkeys cannot be the
correct values because they lead to a pair of the impossible differential. Each
pair suggests a list of 264 wrong 104-bit subkeys. With 247 pairs (out of the 263

available in a structure), the number of wrong subkey candidates remaining is:
2104(1− 264

2104 )2
47

= 2104(1− 2−40)2
47 ≈ 2104 · e−128 ≈ 2−80.66.

The 247 pairs needed are obtained from 264 chosen plaintexts. The mem-
ory complexity is 297 blocks due to the sieving effort and joint list of wrong
subkeys. The time complexity is equivalent to 247(212 + 212) = 260 half-round
SAFER+ computations. The remaining 128-104 = 24 subkey bits can be found
by exhaustive search.

4.5.3 Impossible Differential Attack on SAFER++/128

This section describes an impossible differential attack on SAFER++ with a
128-bit user key. The impossible differential consists of the following differen-
tials, each holding with probability one: the first one has input difference (a, 0,
0, −a, b, 0, 0, −b, c, 0, 0, −c, d, 0, 0, −d), with a, b, c, d 6= 0, at the input to the
ADD/XOR key-mixing layer of the first round, and causes the difference (3b−c,
a, b + c− d, b, 3c− d, −a + c + d, b, c, 3a− b, a + c− d, d, a, −a + 3d, b− c + d,
a− b+d, d) at the output of the PHT layer of the first round; the second differ-
ential has difference (0, e, e, 0, 0, f , g, 0, 0, −g, −f , 0, 0, h, −h, 0) at the input
of the third NL layer, and causes (in the decryption direction) the difference (i,
j, k, 0, l, m, n, o, 0, p, q, r, 0, s, t, u), with i, j, k, l, m, n, o, p, q, r, s, t, u 6= 0 at
the input to the second round (Fig. 4.16).

The impossible differential, therefore, has input difference (a, 0, 0, −a, b,
0, 0, −b, c, 0, 0, −c, d, 0, 0, −d) and cannot cause the output difference
(0, e, −e, 0, 0, f , g, 0, 0, −g, −f , 0, 0, h, −h, 0) after 1.75 rounds. The



98 CHAPTER 4. DIFFERENTIAL CRYPTANALYSIS

0 0 0 0

p=1

X L L X
1

4 5 81P P P P’ ’ ’ ’

X L L X

00 0 0

X L L X

P P P P’ ’ ’ ’

X L L X

00 0 09 12 13 16

0 0 0 0

X

6
6
6 6

7
L L XX L L X

p=1

XX L

’ ’ ’ ’C C CC2 3 6 7 ’ ’ ’ ’C C CC10 11 14 15

10 1514
L X X L L

0 0 00 0 0 00

−b

+c
−a

e

e−e
+g

XX XXL XL X L L L L X X L L

ji k

P H T ++

P H T ++

cb−aa −c −dd

3c −a
+c −b

+d

dab
−c
+d

3d
ada

−d

3a
−b

cb
+c
+d

−d
bb

−d

a
−c
3b

utsrqp0 0onml0

−f
−g
+h

0 −f
−g

−g −f −e 0 e
+g

−f
+f
+g

4f
+3g
−h

f

−h

f0
−4f
−4g
+h

g

g −hh−g −ff−e

0 0 0 00 000

1
4

1
5 8

1 1
161

112
6
3

K K13
1K12

1K1
9KKKK

KK6 6K6K 6KKKK

Figure 4.16: Impossible differential attack on 2.75-round SAFER++.

contradiction is in (at least) one byte difference: the 4th output byte difference
from the first differential is always non-zero, b, while the corresponding byte of
the second differential is always zero. This 1.75-round impossible differential is
placed between two NL layers, so that subkeys after non-zero byte differences at
both ends can be recovered. Thus, the attack covers 2.75 rounds, and proceeds
similarly to that for SAFER+/128, with the key schedule of SAFER++ allowing
to reduce the key-recovery effort from 128 down to 104 subkey bits. The data,
memory and time complexities are the same as for the attack on SAFER+/128.

Table 4.6 summarizes the ID attack complexities on SAFER ciphers.

4.6 The Boomerang Attack

In [223], Wagner presented a new method of analysis of block ciphers, called
the boomerang attack. It is a chosen-text attack that uses advanced differential-
style techniques. In a traditional differential attack, pairs of plaintexts are
chosen with a fixed difference, and the propagation of the differential patterns
throughout the cipher is analyzed. The aim of the attack is to predict the
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Table 4.6: Complexities of ID attacks on SAFER ciphers.

Cipher Block Key #Rounds Complexities
Size Size Data Memory Time

SAFER SK-64 64 64 2.75 232 250 242

64 64 3.75 232 240 262

SAFER SK-128 64 128 2.75 239 258 264

SAFER+ ‡ 128 128 2.75 264 297 260

SAFER++ 128 128 2.75 264 297 260

‡: with tweaked key schedule.

resulting ciphertext difference with non-negligible probability. If this goal can be
accomplished, then the cipher can be distinguished from a random permutation,
and in many cases a key-recovery attack can be mounted on the cipher. A
boomerang attack, on the other hand, does not require the full cipher to be
covered with a single differential. Instead, the attack explores high-probability
differentials that are not necessarily correlated to each other, but that jointly
can cover the full cipher (or most of it). A boomerang attack requires the ability
to make both chosen-plaintext and chosen-ciphertext queries. Moreover, there
are a number of refinements to the basic boomerang technique. In a top-down
boomerang, the chosen-ciphertext queries are adaptive in the sense that one first
obtains ciphertexts which are the results of the chosen-plaintext queries to the
encryption oracle. After that, one performs appropriate modifications to these
ciphertexts and finally feeds them to the decryption oracle. In a bottom-up
boomerang, the attack starts with chosen-ciphertext queries and then performs
adaptive chosen-plaintext queries. Without loss of generality, the top-down
boomerangs will be described, but the procedure for bottom-up boomerangs is
analogous.

Let EK be an encryption algorithm that can be decomposed into two parts,
EK = E1 ◦ E0, where each of E0 and E1 does not necessarily correspond to
half of the cipher. It is clear that DK = E−1

0 ◦ E−1
1 . Moreover, assume that

the difference operator is exclusive-or. The attack starts by choosing a plaintext
pair (P1, P2) such that ∆ = P1⊕P2. Assume that a differential pattern ∆ → ∆∗

exists that propagates across E0 with a non-negligible probability p. Therefore,
∆∗ = E0(P1) ⊕ E0(P2). Let (C1, C2) = (EK(P1), EK(P2)), and ∇ = C1 ⊕
C3 = C2 ⊕ C4 be a chosen-ciphertext difference such that ∇ → ∇∗ with non-
negligible probability q across E−1

1 . Therefore, ∇∗ = E−1
1 (C1) ⊕ E−1

1 (C3) =
E−1

1 (C2) ⊕ E−1
1 (C4). The corresponding plaintext pair (P3, P4) = (DK(C3),

DK(C4)) is requested from the decryption oracle. If all the three previous
difference patterns happened as predicted, the difference between E0 and E1 has
the following structure (Fig. 4.17(a)): E0(P3)⊕E0(P4) = E−1

1 (C3)⊕E−1
1 (C4) =

(E−1
1 (C1)⊕∇∗)⊕ (E−1

1 (C2)⊕∇∗) = ∆∗ . Citing Wagner [223]: “. . . this is why
we call it the boomerang attack: when you send it properly, it always comes back
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Figure 4.17: (a) Top-down Boomerang and (b) Amplified Boomerang. Note the
direction of arrows.

to you.”. Then, the last differential pattern ∆∗ → ∆ is computed by decrypting
E0 for the data in a pair, and the boomerang is detected by verifying whether
P3 ⊕ P4 = ∆.

A right quartet is defined as a 4-tuple (P1, P2, C3, C4) for which all four
differential patterns hold simultaneously. A quartet for a top-down boomerang
means two chosen plaintexts (P1, P2) and two adaptively chosen ciphertexts,
(C3, C4). The probability of observing the difference ∆ in the plaintext pair
(P3, P4) can be estimated as Pr(∆ = P3 ⊕ P4) = Pr(∆ → ∆∗)2 · Pr(∇ →
∇∗)2 = p2 · q2. Note that the differences ∆, ∆∗, ∇ and ∇∗ are uncorrelated,
and may be chosen arbitrarily to maximize the success probability of the attack.
In the boomerang attack, the following property was assumed:

Pr(∆ → ∆∗ by E0) = Pr(∆∗ → ∆ by E−1
0 )

which is true for conventional differential characteristics, but not necessarily
true for truncated differentials.

In [108], Kelsey et al. presented a variant of the boomerang technique called
amplified boomerang attack. While the original boomerang attack used two first-
order differentials that are unrelated (cannot be concatenated), they are con-
nected, nonetheless, by a second-order differential relationship involving texts
between E0 and E1, by adaptive chosen-ciphertext queries. The idea of am-
plified boomerang attacks is to use larger amounts of chosen-plaintext pairs
to obtain the second-order differential relationship in between the two differ-
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entials by chance. This attack uses structures4 of texts [24], and structures
of structures of text in order to obtain the second-order differential relation-
ship for many text pairs at once (Fig. 4.17(b)). In contrast to the original
boomerang technique, amplified boomerangs use only chosen-plaintext (or only
chosen-ciphertext) queries, but not both. Apart from this feature, the former
requires much fewer queries than amplified boomerangs, because in the latter
enough right pairs have to be requested in order to have a high expectation of
obtaining an internal collision, and thus a desired higher-order differential rela-
tionship between the two differential patterns. The probability of right quartet
is 2−(n+1)/2·p·q, where n is the block size. Nonetheless, the amplified boomerang
technique will not be discussed further.

In [20], Biham et al. described the rectangle attack, which, similar to the am-
plified boomerangs, only requires chosen-plaintext (or chosen-ciphertext) queries,
but not both. In a rectangle attack all possible intermediate differences ∆∗ and
∇∗ are considered, such that ∆ → ∆∗ and ∇∗ → ∇. This approach improves
over the amplified boomerang technique and the probability of obtaining a right

quartet in a rectangle attack is 2−n/2 · p̂q̂, where p̂ =
√∑

∀∆∗ Pr2(∆ → ∆∗),

and q̂ =
√∑

∀∇∗ Pr2(∇∗ → ∇).

4.6.1 Boomerang Attacks on IDEA

In a new contribution [31], joint work with Alex Biryukov, several boomerang
attacks have been applied to reduced-round and to the full 8.5-round IDEA ci-
pher. In principle, boomerang attacks can be used to test if the unknown user
key allows boomerangs to cross the cipher. If this membership test succeeds,
then the key is said to belong to a weak-key class. Key-recovery attacks, alter-
natively, can recover some subkeys of the first or the last half-round of IDEA,
and boomerangs can be sent either top-down or bottom-up, depending on the
location of the guessed subkeys. But the latter complexities are usually higher.
A careful choice of the differences ∆ and ∇ allows some half-rounds not to be
covered by either differential patterns. These MA and key-mixing half-rounds
are denoted gaps, and can be crossed with truncated differentials. This obser-
vation was used by Wagner in [223] to attack the Khufu cipher reduced to 16
rounds.

Truncated differentials are used to cause the same difference ∆ → ∆∗

(or ∇ → ∇∗) in two parallel ‘facets’ of the boomerang. In these cases, the
boomerang propagates across one or more half-rounds with probability one,
independent of the particular value of the unknown difference.

The attacks to be described further are based on [31], and identify new
weak-key classes of IDEA, larger than the ones discovered by Daemen et al.

4A structure is a tool to reduce the total number of chosen text blocks. A structure consists
of a set of blocks that provide several pairs for one or more given differences. For instance, a
structure composed of four 4-word blocks in which the first word contains random non-zero
values, and the other words are zero, can generate up to six pairs with difference (δ, 0, 0, 0),
while a conventional approach would require 12 text blocks.
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[57], and not covered by the key classes discovered by Hawkes [89]. Some of
these key classes are the largest ones found so far for IDEA, but they require
more effort for their membership test compared to Hawkes’ differential-linear
weak-key classes. The new attacks use boomerangs as distinguishers.

Definition 4.13 (Boomerang Distinguisher) A sequence of chosen-text differ-
ences ∆ → ∆∗ and ∇ → ∇∗, that propagates like a boomerang across a number
of rounds, with non-negligible probability, is called a boomerang distinguisher.

The benefit of using boomerang distinguishers in IDEA is two-fold: first, they
pose different constraints on the key schedule than the previous differential
and differential-linear distinguishers. Second, the freedom to choose unrelated
difference patterns to cover the E0 and E1 parts of the cipher helps minimize
the key-bit constraints. Thus, new weak-key classes are likely to be found. The
difference operator used is exclusive-or and text differences consist of 4-tuples
of 16-bit words. Non-zero difference words have always the form ν = 8000x
because this difference propagates across the modular addition with probability
one for any subkey word. Thus, the weak-key bit constraints apply only to
multiplicative subkey words.

There are several possibilities for the differential patterns ∆, ∆∗, ∇, and
∇∗ that hold with probability one across several rounds in IDEA. A program
has been written in order to find exhaustively the differential combinations that
cover the largest number of rounds, while at the same time minimizing the num-
ber of key bits restricted to zero. One additional constraint to this search is the
use of gaps, that is, consecutive half-rounds not covered by any of the difference
patterns of the boomerang (the subkey words in it are not necessarily restricted).
The objective is to increase the sizes of the boomerang weak-key classes at the
cost of higher data and time complexities of the membership test. Another
contribution to the boomerang attack framework consists in not covering either
the top-most or the bottom-most key-mixing half-round, assuming that the at-
tacker can guess the required multiplicative subkeys or use special structures to
construct appropriate input (or output) differences after the key mixing. In the
former case, given a correct boomerang quartet, the attacker can find up to 16
bits of multiplicative keys of the first or last key-mixing half-rounds, in addition
to the zero bits of the key class. In the following, several examples of weak-key
classes are described, together with their boomerang membership tests.

The first boomerang distinguisher to be described is labeled (11) in Table 4.7,
pp. 120. This boomerang consists of a differential pattern ∆ → ∆∗ covering the
first six rounds of IDEA, and ∇ → ∇∗ covering the last 2.5 rounds. There are
no gaps. This boomerang can detect a weak-key class of size 2128−82 = 246,
using a single quartet (two chosen-plaintext and two chosen-ciphertext queries)
and four IDEA computations. The attack works either with a top-down or a
bottom-up boomerang.

Another boomerang distinguisher, labeled (12) in Table 4.7, consists of the
differential ∆ → ∆∗ covering the first six rounds, and another differential ∇ →
∇∗ covering the last two rounds of IDEA (Fig. 4.18). There is a gap consisting of
the key mixing of the 7th round, that is not covered by either differential pattern.
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Figure 4.18: Gap for the boomerang distinguisher labeled (12) in Table 4.7.

However, Z
(7)
1 = 0, and the msb15(Z

(7)
4 ) are not restricted. It means that for

a boomerang to cross this gap, only a collision in the fourth word difference at
∇+ and ∇++ is needed. Experiments with 1024 keys demonstrated that 2048
quartets are enough for boomerangs to cross the gap for more than 99% of the
keys. The boomerang direction can be either top-down or bottom-up. The
attack complexity is 4 · 212 = 214 chosen texts, and 214 IDEA computations.

Another boomerang distinguisher, labeled (13) in Table 4.7, consists of the
differentials ∆ → ∆∗ covering the first 2.5 rounds, and ∇ → ∇∗ covering 5.5
rounds. There is a gap consisting of the MA half-round of the 3rd round, in
which lsb2(Z

(3)
5 )=0 and Z

(3)
6 = 0. The careful choice of ∆∗ and ∇∗ allows

the gap to be crossed with a single quartet. The explanation is as follows:
let the inputs/outputs of the gap for each text in a quartet (Fig. 4.19) be de-
noted (Q1, R1) = ((a, b, c, d), (A,B, C, D)), (Q2, R2) = ((a⊕ 8000x, b⊕ 8000x,
c, d ⊕ 8000x), (A′, B′, C ′, D′)), (Q3, R3) = ((X, Y, U,W ), (A,B ⊕ 8000x, C,
D ⊕ 8000x)) (because R3 = R1 ⊕ ∇∗), (Q4, R4) = ((X ′, Y ′, U ′, W ′), (A′, B′ ⊕
8000x, C ′, D′ ⊕ 8000x)) (because R4 = R2 ⊕ ∇∗). For (Q1, R1), let the in-
puts/outputs of the MA-box be denoted: (a⊕ c, b⊕ d), (o1, o2)). For (Q2, R2),
similarly, ((a ⊕ c ⊕ 8000x, b ⊕ d), (u1, u2)). For (Q3, R3), similarly, ((a ⊕ c ⊕
8000x, b⊕ d⊕ 8000x), (o′1, o

′
2)), because of the output values R1. For (Q4, R4),

similarly, ((a ⊕ c, b ⊕ d ⊕ 8000x), (u′1, u
′
2)), because of the output values R4.

From (Q3, R3):

X ⊕ U = a⊕ c⊕ 8000x = A⊕B ⊕ 8000x , (4.16)

Y ⊕W = b⊕ d⊕ 8000x = C ⊕D ⊕ 8000x . (4.17)

From (Q4, R4):
X ′ ⊕ U ′ = a⊕ c = A′ ⊕B′ ⊕ 8000x , (4.18)

Y ′ ⊕W ′ = b⊕ d⊕ 8000x = C ′ ⊕D′ ⊕ 8000x . (4.19)

From (4.16) and (4.18),

X ⊕X ′ = U ⊕ U ′ ⊕ 8000x . (4.20)
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From (4.17) and (4.19),
Y ⊕ Y ′ = W ⊕W ′ . (4.21)

Notice that Q1 ⊕ Q2 = ∆∗, and that Z
(3)
6 = 0. These imply o1 = ((a ⊕ c) ¯

Z
(3)
5 ¢ (b⊕ d))¯ Z

(3)
6 ¢ (a⊕ c)¯ Z

(3)
5 = −(b⊕ d), and u1 = ((a⊕ c⊕ 8000x)¯

Z
(3)
5 ¢(b⊕d))¯Z

(3)
6 ¢(a⊕c⊕8000x)¯Z

(3)
5 = −(b⊕d), that is, o1⊕u1 = 0000x.

Similarly, o′1 = u′1. Since o1 = b ⊕ C, and u1 = b ⊕ C ′ ⊕ 8000x, it follows that
C ⊕ C ′ = 8000x. Also, since o′1 = Y ⊕ C, and u′1 = Y ′ ⊕ C ′, it follows that

Y ⊕ Y ′ = C ⊕ C ′ = 8000x . (4.22)

Moreover, from R1 ⊕ R3 = ∇∗, and the structure of the MA half-round, o′2 =
((a⊕c⊕8000x)¯Z

(3)
5 ¢ (b⊕d⊕8000x))¯Z

(3)
6 = −(a⊕c⊕8000x)¯Z

(3)
5 − (b⊕

d⊕8000x), u′2 = ((a⊕c)¯Z
(3)
5 ¢ (b⊕d⊕8000x))¯Z

(3)
6 = −(a⊕c)¯Z

(3)
5 − (b⊕

d⊕8000x), o2 = ((a⊕ c)¯Z
(3)
5 ¢ (b⊕d))¯Z

(3)
6 = −(a⊕ c)¯Z

(3)
5 − (b⊕d), and

u2 = ((a⊕c⊕8000x)¯Z
(3)
5 ¢ (b⊕d))¯Z

(3)
6 = −(a⊕c⊕8000x)¯Z

(3)
5 − (b⊕d).

Therefore, u2 ⊕ o2 = u′2 ⊕ o′2, which implies that

(a⊕ 8000x⊕A′)⊕ (a⊕A) = (X ⊕A)⊕ (X ′⊕A′) ⇒ X ⊕X ′ = 8000x , (4.23)

From (4.20), (4.21), (4.22), and (4.23) it follows that ∆ = (X ⊕ X ′, Y ⊕
Y ′, U⊕U ′,W⊕W ′) = (8000x, 8000x, 0000x, 8000x) = ∆∗. This means that the
boomerang crosses the gap with one quartet only, independent of the value of
Z

(3)
5 . The attack complexity corresponds to one quartet (two chosen plaintexts

and two chosen ciphertexts), and four IDEA computations.
Another boomerang distinguisher, labeled (14) in Table 4.7, consists of

the differentials ∆ → ∆∗ covering six rounds, and ∇ → ∇∗ covering the
first 1.5 rounds. There is a gap consisting of the MA half-round of the 2nd
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round, in which lsb5(Z
(2)
6 )=0. Due to the careful choice of ∆∗ and ∇∗, this

gap can be crossed with a single quartet. The explanation is as follows: let
the inputs/outputs of the gap for each text in a quartet (Fig. 4.20) be de-
noted (Q1, R1)= ((a′, b′, c′, d′), (A,B, C, D)), (Q2, R2)= ((a, b, c, d), (A,B ⊕
8000x, C, D⊕ 8000x)), (Q3, R3)= ((a′ ⊕ 8000x, b′ ⊕ 8000x, c′, d′), (X, Y, U,W ))
(because Q3 = Q1 ⊕ ∇∗), and (Q4, R4)= ((a ⊕ 8000x, b ⊕ 8000x, c, d), (X ′,
Y ′, U ′, W ′)), (because Q4 = Q2 ⊕ ∇∗). For (Q1, R1) and (Q4, R4) the5 in-
puts/outputs of the MA-box are ((A⊕B, C ⊕D). For (Q2, R2) and (Q3, R3),
the6 inputs/outputs of the MA-box are (A⊕B ⊕ 8000x, C ⊕D ⊕ 8000x). The
following relationships can be derived: from (Q3, R3),

X ⊕ Y = A⊕B ⊕ 8000x , (4.24)

U ⊕W = C ⊕D ⊕ 8000x , (4.25)

and from (Q4, R4),
X ′ ⊕ Y ′ = A⊕B , (4.26)

U ′ ⊕W ′ = C ⊕D . (4.27)

From (4.24) and (4.26), it follows that

X ⊕X ′ = Y ⊕ Y ′ ⊕ 8000x , (4.28)

From (4.25), and (4.27), it follows that

U ⊕ U ′ = W ⊕W ′ ⊕ 8000x . (4.29)

Notice that Z
(2)
5 and Z

(2)
6 are fixed, and that the MA-box inputs for Q2 and

Q3 are equal, as well as for Q1 and Q4. Therefore, the corresponding outputs,
denoted (u1, u2), for Q2, and Q3 are the same, and also the outputs, denoted
(o1, o2) for Q1 and Q4 are equal. It follows that

u1 = b⊕ C = b′ ⊕ 8000x ⊕ U , (4.30)

u2 = c⊕B ⊕ 8000x = c′ ⊕ Y , (4.31)

o1 = b′ ⊕ C = b⊕ 8000x ⊕ U ′ , (4.32)

o2 = c′ ⊕B = c⊕ Y ′ . (4.33)

From (4.30) and (4.32), it follows that

U ⊕ U ′ = 0000x . (4.34)

From (4.31) and (4.33), it follows that

Y ⊕ Y ′ = 8000x . (4.35)
5Because (a⊕ 8000x)⊕ c = A⊕B, and (b⊕ 8000x)⊕ d = C ⊕D, from (Q2, R2).
6Because, (a′ ⊕ 8000x) ⊕ c′ = A ⊕ B ⊕ 8000x, and (b′ ⊕ 8000x) ⊕ d′ = C ⊕ D ⊕ 8000x,

from (Q1, R1).
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Figure 4.20: Gap for the boomerang distinguisher labeled (14) in Table 4.7.

From (4.28), (4.29), (4.34), and (4.35), it follows that ∆ = (X⊕X ′, Y ⊕Y ′, U ⊕
U ′, W ⊕ W ′) = (0000x, 8000x, 0000x, 8000x) = ∆∗, that is, the gap can be
crossed with a single quartet, independent of the values of Z

(2)
5 , and Z

(2)
6 .

The last key mixing in the boomerang is not covered by either differential
pattern, which implies that the boomerang direction is bottom-up. Moreover,
lsb2(Z

(9)
4 ) = 0. The attack proceeds as follows: prepare two sets of ciphertexts in

which the first and second words are equal, the third words differ by 8000x, and
the fourth words have 29 random values each. This text structure contains 218

pairs with difference (0000x, 0000x, 8000x, δ). After decryption by the last key
mixing, each possible 16-bit difference is suggested by δ and Z

(9)
4 about 218−16 =

4 times, on average, and that is enough to cross the gap. The boomerang can
be recognized by checking the 48-bit difference (0000x, 0000x, 8000x) at the
first three words of C3⊕C4. The attack complexity is 2 · (29 +29) = 211 chosen
texts and 211 IDEA computations.

Comparatively, a key-recovery attack for the msb14(Z
(9)
4 ) would require 214

guesses, and one text quartet per guess to cross the gap, resulting in 214 ·4 = 216

chosen texts and 216 IDEA computations.
Another boomerang distinguisher, labeled (15) in Table 4.7, consists of the

differentials ∆ → ∆∗ covering three rounds, and ∇ → ∇∗ covering the last
4.5 rounds. There is a gap consisting of the MA half-round of the 4th round
(Fig. 4.21), in which msb7(Z

(4)
5 ) = 0. The careful choice of ∆∗ and ∇∗ allows

this gap to be crossed with a single quartet. The explanation is the following:
let the inputs/outputs of the gap for each text in a quartet (Fig. 4.21) be
denoted (Q1, R1) = ((a, b, c, d), (A,B,C, D)), (Q2, R2) = ((a, b, c ⊕ 8000x, d ⊕
8000x), (A′, B′, C ′, D′)), (Q3, R3)= ((X,Y, U,W ), (A,B⊕8000x, C, D⊕8000x))
(because R3 = R1⊕∇∗), and (Q4, R4)= ((X ′, Y ′, U ′, W ′), (A′, B′⊕8000x, C ′,
D′ ⊕ 8000x)) (because R4 = R2 ⊕∇∗). For (Q1, R1), the inputs/outputs of the
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MA-box are: (a ⊕ c, b ⊕ d). For (Q2, R2), the inputs/outputs of the MA-box
are: (a ⊕ c ⊕ 8000x, b ⊕ d ⊕ 8000x). For (Q3, R3), similarly, (a ⊕ c ⊕ 8000x,
b ⊕ d ⊕ 8000x), because A ⊕ B = a ⊕ c, and C ⊕ D = b ⊕ d, from (Q1, R1).
For (Q4, R4), similarly, (a ⊕ c, b ⊕ d), because A′ ⊕ B′ = a ⊕ c ⊕ 8000x, and
C ′ ⊕ D′ = b ⊕ d ⊕ 8000x, from (Q2, R2). The following relationships can be
derived: from (Q3, R3),

X ⊕ U = a⊕ c⊕ 8000x , (4.36)

Y ⊕W = b⊕ d⊕ 8000x , (4.37)

and from (Q4, R4),
X ′ ⊕ U ′ = a⊕ c , (4.38)

Y ′ ⊕W ′ = b⊕ d . (4.39)

From (4.36) and (4.38), it follows that

X ⊕X ′ = U ⊕ U ′ ⊕ 8000x , (4.40)

From (4.37), and (4.39), it follows that

Y ⊕ Y ′ = W ⊕W ′ ⊕ 8000x . (4.41)
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Figure 4.21: Gap for boomerang distinguisher labeled (15) in Table 4.7

Note that Z
(4)
5 , and Z

(4)
6 are fixed, and the MA-box inputs for Q1 and Q4 are

equal, as well as the MA-box inputs for Q2 and Q3. Therefore, the corresponding
MA-box outputs for Q1 and Q4, denoted (o1, o2) are the same, and also, the
MA-box outputs for Q2, and Q3, denoted (u1, u2). It follows that

o1 = b⊕ C ′ = Y ⊕ C, (4.42)

o2 = c⊕ 8000x ⊕B′ = U ⊕B ⊕ 8000x , (4.43)
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u1 = Y ′ ⊕ C ′ = b⊕ C , (4.44)

u2 = U ′ ⊕B′ ⊕ 8000x = c⊕B . (4.45)

From (4.42) and (4.44), it follows that

Y ⊕ Y ′ = 0000x . (4.46)

From (4.43) and (4.45), it follows that

U ⊕ U ′ = 8000x . (4.47)

From (4.40), (4.41), (4.46), and (4.47), it follows that ∆ = (X⊕X ′, Y ⊕Y ′, U ⊕
U ′, W ⊕ W ′) = (0000x, 0000x, 8000x, 8000x) = ∆∗, that is, the gap can be
crossed with a single quartet, independent of the values of Z

(4)
5 , and Z

(4)
6 .

The first key-mixing half-round is not covered by either differential pattern,
which implies that the boomerang direction is top-down. Moreover, lsb7(Z

(1)
4 )=0.

The attack proceeds as follows: prepare two sets of plaintexts in which the first
and second words are equal, the third words differ by 8000x and the fourth
words takes 29 random values each. This text structure contains 218 pairs with
difference (0000x, 0000x, 8000x, δ). After encryption by the first key mixing,
each possible 16-bit difference is suggested by δ and Z

(1)
4 about 218−16 = 4

times, on average, which is enough to cross the gap. The attack complexity is
2 · (29 + 29) = 211 chosen texts and 211 IDEA computations.

Comparatively, a key-recovery attack for the msb9(Z
(1)
4 ) requires 29 guesses,

and one quartet per guess to cross the gap, resulting in 29 · 4 = 211 chosen texts
and 211 IDEA computations.
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Figure 4.22: Gap for the boomerang distinguisher labeled (16) in Table 4.7.

Another boomerang distinguisher, labeled (16) in Table 4.7, consists of the
differentials ∆ → ∆∗ covering 4.5 rounds, and ∇ → ∇∗ covering the last three
rounds. There is a gap consisting of the key-mixing half-round of the 6th round
(Fig. 4.22), in which lsb7(Z

(6)
4 )=0. The approach to cross this gap is to use

enough quartets in order to cause a collision at the fourth difference word in
∇+ and ∇++, so that the quartet structure will cause ∆ = ∆∗, similar to the
boomerang labeled (12). Experiments with 1024 randomly chosen keys from
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the weak-key class demonstrated that 29 quartets are enough for boomerangs
to cross the gap for more than 98% of the keys. The first key-mixing half-round
is not covered by either differential pattern, which implies that the boomerang
direction is top-down. Moreover, lsb7(Z

(1)
4 ) = 0. The attack proceeds as follows:

prepare two sets of plaintexts in which the first and second words are equal, the
third words differ by 8000x and the 4th words contains 213 random values each.
This text structure contains 226 pairs with difference (0000x, 0000x, 8000x,
δ). After encryption by the first key mixing, each possible 16-bit difference is
suggested by δ and Z

(1)
4 about 226−16 = 210 times, which is enough to cross the

gap. The attack complexity is 2 · (213 + 213) = 215 chosen texts and 215 IDEA
computations.

Comparatively, a key-recovery attack for the msb9(Z
(1)
4 ) requires 29 guesses,

and 29 quartets to cross the gap per guess, resulting in 29+9 · 4 = 220 chosen
texts and 220 IDEA computations.
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Figure 4.23: Gap for boomerang distinguisher labeled (17) in Table 4.7.

Another boomerang distinguisher, labeled (17) in Table 4.7, consists of the
differentials ∆ → ∆∗ covering 2.5 rounds, and ∇ → ∇∗ covering the first 4.5
rounds. There is a gap consisting of the MA half-round of the 5th round and the
key mixing of the 6th round (Fig. 4.23), in which msb8(Z

(5)
5 ) = 0, lsb2(Z

(5)
6 ) = 0

and lsb9(Z
(6)
4 ) = 0. The approach to cross this gap is to use enough quartets in

order to cause a collision between ∇+ and ∇++ in opposite facets of the gap,
so that the quartet structure will result in ∆ = ∆∗. Experiments with 1024
randomly chosen keys from the weak-key class indicated that 224 quartets are
enough for boomerangs to cross this gap for more than 80% of the keys. The last
key-mixing half-round is not covered by either differential pattern, which implies
that the boomerang direction is bottom-up. Moreover, lsb9(Z

(9)
4 ) = 0, and

msb2(Z
(9)
4 ) = 0. The attack proceeds as follows: prepare two sets of ciphertexts

in which the first and third words are equal, the second words differ by 8000x
and the fourth words contains 216 values each. This text structure contains 232
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pairs with difference (0000x, 8000x, 0000x, δ). After decryption by the last
key mixing, each possible 16-bit difference is suggested by δ and Z

(9)
4 about

232−16 = 216 times. Using 256 structures provides the number of right quartets
needed to cross the gap. The attack complexity is 28 ·2 ·(216 +216) = 226 chosen
texts and 226 IDEA computations. Comparatively, a key-recovery attack on the
lsb5(Z

(9)
4 À 9) would require 25 guesses, and 224 quartets to cross the gap per

guess, resulting in 25+24 · 4 = 231 chosen texts, and 231 IDEA computations.
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Figure 4.24: Gap for boomerang distinguisher labeled (18) in Table 4.7.

Another boomerang distinguisher, labeled (18) in Table 4.7, consists of the
differentials ∆ → ∆∗ covering six rounds, and ∇ → ∇∗ covering the first
round. There is a gap consisting of the full second round (Fig. 4.24), in which
msb12(Z

(2)
1 ) = 0, and lsb5(Z

(2)
6 ) = 0. The approach to cross this gap is to use

enough quartets in order to obtain a collision between ∇+ and ∇++ in opposite
facets of the gap, so that the quartet structure will result in ∆ = ∆∗. Experi-
ments with 1024 randomly chosen keys from the weak-key class demonstrated
that 224 quartets are enough to for boomerangs to cross this gap for about 90%
of the keys. The last key-mixing half-round is not covered by either differential
pattern, which implies that the boomerang direction is bottom-up. Moreover,
lsb2(Z

(9)
4 ) = 0. The attack proceeds as follows: prepare two sets of ciphertexts

in which the first and second words are equal, the third words differ by 8000x
and the fourth words take 216 values each. This text structure contains 232

pairs with difference (0000x, 0000x, 8000x, δ). After decryption by the last
key mixing, each possible 16-bit difference is suggested by δ and Z

(9)
4 about

232−16 = 216 times. Using 256 structures provides the necessary number of
right quartets to cross the gap. The attack complexity is 28 ·2 · (216 +216) = 226

chosen texts and 226 IDEA computations. Comparatively, a key-recovery at-
tack for the msb14(Z

(9)
4 ) would require 214 guesses, and 224 quartets per guess,
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Figure 4.25: Gap for boomerang distinguisher labeled (19) in Table 4.7.

resulting in 214+24 · 4 = 240 chosen texts and 240 IDEA computations.
Another boomerang distinguisher, labeled (19) in Table 4.7, consists of the

differentials ∆ → ∆∗ covering 1.5 rounds, and ∇ → ∇∗ covering 5.5 rounds.
There is a gap consisting of the MA half-round of the 3rd round (Fig. 4.25),
in which lsb9(Z

(3)
6 ) = 0. Compared to the boomerang in Fig. 4.19, this gap

cannot be crossed with a single quartet, because both Z
(3)
5 and Z

(3)
6 are not

fully restricted. The approach to cross the gap is to use enough quartets in
order to obtain a collision between ∇+ and ∇++, so that the quartet structure
will result in ∆ = ∆∗. Experiments with 1024 randomly chosen keys from the
weak-key class demonstrated that 216 quartets are enough for boomerangs to
cross this gap for more than 99% of the keys. The first key-mixing half-round
is not covered by either differential pattern, which implies that the boomerang
direction is top-down. Moreover, Z

(1)
4 is not restricted. The attack proceeds as

follows: prepare two sets of plaintexts in which the first, second and third words
are equal, and the fourth words contain 216 values each. This text structure
contains 232 pairs with difference (0000x, 0000x, 0000x, δ). After encryption
by the first key mixing, each possible 16-bit difference is suggested by δ and
Z

(1)
4 about 232−16 = 216 times, which is enough to cross the gap. The attack

complexity is 2 · (216 + 216) = 218 chosen texts and 218 IDEA computations.
Comparatively, a key-recovery attack on Z4(1) would require 216 guesses, and
216 quartets per guess, to cross the gap, resulting in 216+16 · 4 = 234 chosen
texts, and 234 IDEA computations.

Another boomerang distinguisher, labeled (21) in Table 4.7, consists of the
differentials ∆ → ∆∗ covering three rounds, and ∇ → ∇∗ covering four rounds.
There is a gap consisting of the MA half-round of the 4th round (Fig. 4.26) and
the key mixing of the 5th round, for which msb8(Z

(4)
5 ) = 0 and lsb7(Z

(5)
4 )=0.
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Figure 4.26: Gap for boomerang distinguisher labeled (21) in Table 4.7.

The approach to cross the gap is to use enough quartets in order to obtain a
collision between the differences ∇+ and ∇++, so that the quartet structure
will result in ∆ = ∆∗. Experiments with 1024 randomly chosen keys from the
weak-key class demonstrated that 224 quartets are enough for boomerangs to
cross the gap for more than 90% of the keys. The first key-mixing half-round
is not covered by either differential pattern, which implies that the boomerang
direction is top-down. Moreover, Z

(1)
4 is not restricted. The attack proceeds as

follows: prepare two sets of plaintexts in which the first, second and third words
are equal, and the fourth words contain 216 values each. This text structure
contains 232 pairs with difference (0000x, 0000x, 0000x, δ). After encryption
by the first key mixing, each possible 16-bit difference is suggested by δ and Z

(1)
4

about 232−16 = 216 times. Using 256 structures provides the necessary number
of right quartets to cross the gap. The attack complexity is 28·2·(216+216) = 226

chosen texts and 226 IDEA computations. Comparatively, a key-recovery attack
on Z

(1)
4 would require 216 guesses, and 224 quartets per guess to cross the gap,

resulting in 216+24 · 4 = 242 chosen texts and 242 IDEA computations.

The next boomerang distinguisher, the largest one found, is similar to Dae-
men’s differential weak-key class, and is labeled (23) in Table 4.7. It consists
of the differentials ∆ → ∆∗ covering six rounds, and ∇ → ∇∗ covering the 8th
MA half-round. There is a gap consisting of the full 7th round, and the key
mixing of the 8th round (Fig. 4.27), for which Z

(7)
5 = 0 and msb13(Z

(7)
6 )=0.

The approach to cross the gap is to use enough quartets in order to obtain a
collision between the differences ∇+ and ∇++, so that the quartet structure
will result in ∆ = ∆∗. Experiments with 1024 randomly chosen keys from the
weak-key class demonstrated that 214 quartets are enough for boomerangs to
cross this gap for 25% of the keys. The use of more quartets, such as 219,
allows identification of about 32% of the weak-key class. The last key-mixing
half-round is not covered by either differential pattern, which implies that the
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Figure 4.27: Gap for the boomerang distinguisher labeled (23) in Table 4.7.

boomerang direction is bottom-up. Moreover, msb2(Z
(9)
4 ) = 0. The attack pro-

ceeds as follows: prepare two sets of ciphertexts in which the first and third
words are equal, the second words differ by 8000x and the fourth words contain
214 random values each. This text structure contains 228 pairs with difference
(0000x, 8000x, 0000x, δ). After decryption by the last key mixing, each pos-
sible 16-bit difference is suggested by δ and Z

(9)
4 about 228−16 = 214 times, on

average, which is enough to cross the gap and identify a weak-key class of size
1
4 · 266 = 264. The attack complexity is 2 · (214 +214) = 216 chosen texts and 216

IDEA computations. Comparatively, a key-recovery attack for the msb14(Z
(9)
4 )

would require 214 guesses, and 214 quartets to cross the gap to identify 1
4 of the

keys in the weak-key class, resulting in 214+14 · 4 = 230 chosen texts and 230

IDEA computations.
As an example of boomerang attack on larger gaps, consider the boomerang

distinguisher labeled (22) in Table 4.7. It consists of differentials ∆ → ∆∗,
covering 3.5 rounds, and ∇ → ∇∗ covering 3.5 rounds. There is a gap consisting
of the MA half-round of the 4th round, and the full 5th round (Fig. 4.28), for
which Z

(5)
1 = 0, lsb7(Z

(5)
4 ) = 0, and msb13(Z

(5)
5 ) = 0. In order to cross the gap,

enough quartets are used to cause a collision between ∇+ and ∇++, so that
the quartet structure will result in ∆ = ∆∗. Experiments with 1024 randomly
chosen keys from the weak-key class demonstrated that 224 quartets are enough
for boomerangs to cross this gap for 25% of the keys. The first key-mixing
half-round is not covered by either differential pattern, which implies that the
boomerang direction is top-down. Moreover, Z

(1)
4 is not restricted. The attack

proceeds as follows: prepare two sets of plaintexts in which the first, second and
third words are equal, and the fourth words contains all 216 values each. This
text structure contains 232 pairs with difference (0000x, 0000x, 0000x, δ). After
encryption by the first key mixing, each possible 16-bit difference is suggested
by δ and Z

(1)
4 about 232−16 = 216 times. Using 256 structures provides the
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Figure 4.28: Gap for the boomerang distinguisher labeled (22) in Table 4.7.

necessary number of right quartets to cross the gap and identify a weak-key
class of size 1

4 · 263 = 261. The attack complexity is 28 · 2 · (216 + 216) = 226

chosen texts and 226 IDEA computations.

The last boomerang for 8.5-round IDEA is labeled (20) in Table 4.7. It
consists of the differentials ∆ → ∆∗, covering 1.5 rounds, and ∇ → ∇∗, covering
5.5 rounds. There is a gap consisting of the MA half-round of the 2nd round
and the full 3rd round (Fig. 4.29), for which lsb12(Z

(2)
6 ) = 0, Z

(3)
1 =0, Z

(3)
4 = 0,

and lsb5(Z
(3)
6 ) = 0. In order to cross the gap enough quartets are requested to

cause a collision between ∇+ and ∇++, so that the quartet structure will result
in ∆ = ∆+. Experiments with 1024 randomly chosen keys from the weak-key
class demonstrated that 223 quartets are enough for boomerangs to cross the
gap for about 2−6 of the keys. The first key-mixing half-round is not covered
by either differential pattern, which implies that the boomerang direction is
top-down. Moreover, Z

(1)
1 = 0, but Z

(1)
4 is not restricted. The attack proceeds

as follows: prepare two plaintext sets in which the second words are equal, the
first and third words differ by 8000x, and the fourth words contain all 216 values
each. This structure contains 232 pairs with difference (8000x, 0000x, 8000x,
δ). After encryption by the first key mixing, each possible 16-bit difference is
suggested by δ and Z

(1)
4 about 232−16 = 216 times. Using 128 structures provides

the necessary number of right quartets to cross the gap and identify a weak-key
class of size 2−6 · 266 = 260. The attack complexity is 27 · 2 · (216 + 216) = 225

chosen texts and 225 IDEA computations.
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Figure 4.29: Gap for the boomerang distinguisher labeled (20) in Table 4.7.

4.6.2 Boomerang Attacks on Reduced-Round IDEA

The procedure to find the boomerangs for 8.5-round IDEA was also adapted to
search for boomerangs in reduced-round versions of IDEA.

The first boomerang attack to be described covers 4-round IDEA from the
4th until the 7th round, and is labeled (1) in Table 4.7. The boomerang consists
of the differentials ∆ → ∆∗, covering 1.5 rounds, and ∇ → ∇∗ covering one
round. There is a gap consisting of the full 6th round, in which lsb9(Z

(6)
5 ) = 0,

and msb13(Z
(6)
6 ) = 0. This gap is similar to the one for the boomerang labeled

(22) in Table 4.7, and the procedure to cross it is similar. The key mixing
of the 4th round is not covered by either differential pattern, which implies
that the boomerang direction is top-down. Notice that lsb7(Z

(4)
4 ) = 0. The

attack proceeds as follows: consider two text sets in which the first and second
words are equal, the third words differ by 8000x, and the fourth words assume
random 215 values each. This text structure can form 230 text pairs of the form
(0000x, 0000x, 8000x, δ). It is expected that each 16-bit difference, after the
key mixing of the 4th round is suggested by δ and Z

(4)
4 about 230−16 = 214 times,

on average. Experiments with 1024 randomly chosen keys from the weak-key
class demonstrated that 214 quartets are enough for boomerangs to cross the
gap for 50% of the keys. It means that this boomerang can identify a weak-key
class of size 2105. The attack complexity is 2 · (214 +214) = 216 chosen texts and
216 IDEA computations.

The next boomerang distinguisher is labeled (2) in Table 4.7 and covers 4.5
rounds, from the 4th till the key-mixing of the 8th round. It consists of the
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differential ∆ → ∆∗, covering 1.5 rounds, and ∇ → ∇∗ covering 1.5 rounds.
There is a gap consisting of the MA half-round of the 5th round and the key
mixing of the 6th round, in which msb8(Z

(5)
5 ) = 0 and lsb9(Z

(6)
4 ) = 0. This gap

is similar to the one in the boomerang labeled (17) in Table 4.7. The key mixing
of the 8th round is not covered by either differential pattern, which implies that
the boomerang direction is bottom-up. Notice that Z

(8)
4 is not restricted. The

attack proceeds as follows: consider two text sets in which the first and third
words are equal, the second words differ by 8000x, and the fourth words assume
all 216 values each. This text structure can form 232 text pairs of the form
(0000x, 8000x, 0000x, δ). It is expected that each 16-bit difference, after the
key mixing of the 8th round is suggested by δ and Z

(8)
4 about 232−16 = 216

times. Experiments with 1024 randomly chosen keys from the weak-key class
demonstrated that 220 quartets allows boomerangs to cross the gap for about
50% of the keys. It means that the boomerang can identify a weak-key class of
size 2103. The attack complexity is 24 · 2 · (216 +216) = 222 chosen texts and 222

IDEA computations.

The next boomerang distinguisher is labeled (3) in Table 4.7 and covers 4.5-
round IDEA, from the 3rd until the key-mixing of the 7th round. It consists of
the differentials ∆ → ∆∗ covering 1.5 rounds, and ∇ → ∇∗ covering 1.5 rounds.
There is a gap consisting of the MA half-round of the 4th round, in which
msb6(Z

(4)
5 ) = 0 and the key mixing of the 5th round, in which lsb9(Z

(5)
4 ) = 0.

This gap is similar to the one in the boomerang labeled (17) in Table 4.7. The
key mixing of the 7th round is not covered by either differential pattern which
implies that the boomerang direction is bottom-up. Notice that Z

(7)
4 is not

restricted. The attack proceeds as follows: consider two text sets in which the
first and third words are equal, the second words differ by 8000x, and the fourth
words assume all 216 values each. This text structure can form 232 text pairs of
the form (0000x, 8000x, 0000x, δ). It is expected that each 16-bit difference,
after decrypting the key mixing of the 7th round is suggested by δ and Z

(7)
4

about 232−16 = 216 times. Experiments with 1024 randomly chosen keys from
the weak-key class demonstrated that 220 quartets are enough for about 50%
of the keys to cross the gap. This trade-off allows identification of a weak-key
class of size 2103. The attack complexity is 24 · 2 · (216 + 216) = 222 chosen texts
and 222 IDEA computations.

The next boomerang distinguisher is labeled (4) in Table 4.7, and covers
5-round IDEA, from the 2nd until the 6th round. It consists of the differentials
∆ → ∆∗, covering 1.5 rounds, and ∇ → ∇∗ covering three rounds. There is a
gap consisting of the MA half-round of the 3rd round, in which both Z

(3)
5 and

Z
(3)
6 are not restricted. This gap is similar to the one in the boomerang labeled

(14) in Table 4.7, that is, one quartet is enough to cross the gap. The key mixing
of the 2nd round is not covered by either differential pattern which implies that
the boomerang direction is top-down. Notice that Z

(2)
4 is not restricted. The

attack proceeds as follows: consider two text sets in which the first and third
words are equal, the second words differ by 8000x, and the fourth words assume
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28 random values each. This text structure can form 216 text pairs of the
form (0000x, 8000x, 0000x, δ). It is expected that each 16-bit difference, after
encrypting the key mixing of the 2nd round is suggested by δ and Z

(2)
4 about

once, on average. The attack complexity is 2 · (28 + 28) = 210 chosen texts and
210 IDEA computations.

The next boomerang distinguisher is labeled (5) in Table 4.7, and covers
5-round IDEA, from the 3rd until the 7th round. It consists of the differentials
∆ → ∆∗, covering 1.5 rounds, and ∇ → ∇∗, covering three rounds. There is a
gap consisting of the MA half-round of the 4th round, in which msb1(Z

(4)
5 ) = 0

while Z
(4)
6 is not restricted. This gap is similar to the one in the boomerang

labeled (14) in Table 4.7, that is, one quartet is enough to cross the gap. The
key mixing of the 3rd round is not covered by either differential pattern which
implies that the boomerang direction is top-down. Notice that msb10(Z

(3)
4 ) = 0.

The attack proceeds as follows: consider two text sets in which the first and
third words are equal, the second words differ by 8000x, and the fourth words
assume 28 random values each. This text structure can form 216 text pairs of
the form (0000x, 8000x, 0000x, δ). It is expected that each 16-bit difference,
after encrypting the key mixing of the 3rd round is suggested by δ and Z

(3)
4 ,

about once, on average. The attack complexity is 2 ·(28 +28) = 210 chosen texts
and 210 IDEA computations.

The next boomerang distinguisher is labeled (6) in Table 4.7, and covers
5-round IDEA, from the 3rd until the 7th round. It consists of the differentials
∆ → ∆∗ covering three rounds, and ∇ → ∇∗, covering 1.5 rounds. There is
a gap consisting of the key mixing of the 6th round, in which lsb2(Z

(6)
4 ) = 0,

but the careful choice of differences ∆∗ = (0000x, 8000x, 0000x, 8000x), and
∇∗ = (8000x, 0000x, 0000x, 0000x) allows boomerangs to cross the gap with
a single quartet, independent of Z

(6)
1 and Z

(6)
4 . The gap is similar to the one

labeled (14) in Table 4.7. The boomerang direction can be either top-down or
bottom-up. The attack complexity is 4 chosen texts and 4 IDEA computations.

The next boomerang distinguisher is labeled (7) in Table 4.7, and covers
5-round IDEA, from the 3rd until the 7th round. It consists of the differentials
∆ → ∆∗, covering three rounds, and ∇ → ∇∗, covering one round. There
is a gap consisting of the full 6th round, where lsb2(Z

(6)
4 ) = 0, Z

(6)
5 = 0 and

msb13(Z
(6)
6 ) = 0. This gap is similar to the one in the boomerang labeled

(18) in Table 4.7. The boomerang direction can be either top-down or bottom-
up. Experiments with 1024 randomly chosen keys from the weak-key class
demonstrated that 211 quartets are enough for boomerangs to cross the gap for
more than 90% of the keys. The attack complexity is 4 · 211 = 213 chosen texts
and 213 IDEA computations.

The next boomerang distinguisher is labeled (8) in Table 4.7, and covers
5.5-round IDEA, from the 3rd until the key mixing of the 8th round. It consists
of the differentials ∆ → ∆∗, covering three rounds, and ∇ → ∇∗, covering 1.5
rounds. There is a gap consisting of the key mixing of the 6th round, in which
lsb2(Z

(6)
4 ) = 0. This gap is similar to the one in the boomerang labeled (7) in



118 CHAPTER 4. DIFFERENTIAL CRYPTANALYSIS

Table 4.7. Only one quartet is enough to cross the gap. The key mixing of the
8th round is not covered by either differential pattern, which implies that the
boomerang direction is bottom-up. Notice that msb6(Z

(8)
1 ) = 0 while Z

(8)
4 is

not restricted. The attack proceeds as follows: consider two text sets in which
the first words assume 28 random values each, the second words differ by 8000x,
the third words are equal, and the fourth words assume 28 random values each.
This text structure can form (28 ·28)2 = 232 pairs of the form (δ1, 8000x, 0000x,
δ2). It is expected that each pair of 16-bit differences, after decrypting the key
mixing of the 8th round, is suggested by (δ1, Z

(8)
1 ), and (δ2, Z

(8)
4 ) about once,

on average. The attack complexity is 4 ·28 ·28 = 218 chosen texts and 218 IDEA
computations.

The next boomerang distinguisher is labeled (9) in Table 4.7, and cover 5.5-
round IDEA, from the 3rd until the key mixing of the 8th round. It consists
of the differentials ∆ → ∆∗, covering three rounds, and ∇ → ∇∗, covering one
round. There is a gap consisting of the full 6th round, in which lsb2(Z

(6)
4 ) = 0,

Z
(6)
5 = 0, and msb13(Z

(6)
6 ) = 0. This gap is similar to the one in the boomerang

labeled (18) in Table 4.7. The key mixing of the 8th round is not covered
by either differential pattern which implies that the boomerang direction is
bottom-up. Notice that msb4(Z

(8)
1 ) = 0, while Z

(8)
4 is not restricted. The attack

proceeds as follows: consider two text sets in which the first words assume 211

random values each, the second words differ by 8000x, the third words are equal,
and the fourth words assume 211 random values each. This text structure can
form (211·211)2 = 244 text pairs of the form (δ1, 8000x, 0000x, δ2). It is expected
that each pair of 16-bit differences, after decrypting the key mixing of the 8th
round, is suggested by (δ1, Z

(8)
1 ), and (δ2, Z

(8)
4 ) about 244−32 = 212 times, on

average. Experiments with 1024 randomly chosen keys from the weak-key class
demonstrated that 212 quartets are enough for boomerangs to cross the gap for
more than 90% of the keys. The attack complexity is 4 · 211 · 211 = 224 chosen
texts and 224 IDEA computations.

The last boomerang distinguisher is labeled (10) in Table 4.7, and covers
6-round IDEA, from the 2nd until the 7th round. It consists of the differentials
∆ → ∆∗, covering one round, and ∇ → ∇∗, covering four rounds. There is
a gap consisting of the MA half-round of the 3rd round, in which both Z

(3)
5

and Z
(3)
6 are not restricted. This gap is similar to the one in the boomerang

labeled (15) in Table 4.7, that is, only one quartet is enough to cross the gap.
The key-mixing of the 2nd round is not covered by either differential pattern,
which implies that the boomerang direction is top-down. Notice that Z

(2)
4 , is

not restricted. The attack proceeds as follows: consider two text sets in which
the first and third words are equal, the second words differ by 8000x, and the
fourth words assume 28 random values each. This text structure can form 216

text pairs of the form (0000x, 8000x, 0000x, δ). It is expected that each 16-bit
difference, after encrypting the key mixing of the 2nd round, is suggested by
(δ, Z(2)

4 ) about once, on average. The attack complexity is 2 · (28 + 28) = 210

chosen texts and 210 IDEA computations.
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Table 4.7 summarizes the attack complexities on reduced-round and 8.5-
round IDEA. In the upper-half of this table, the attacks are on reduced-round
versions of IDEA, thus there is no unswap of the middle words in the last round.
In the 5th column, top-down boomerangs are denoted by ↓, and bottom-up
boomerangs by ↑. The case in which the boomerang direction is irrelevant is
denoted l. In the 4th column, the half-rounds range from 0 till 16. The notation
|WKC| means the weak-key class size. In the 7th and 8th columns, the symbol
‘0’ stands for the difference 0000x, ν = 8000x, and ‘*’ denotes an arbitrary
difference used to cause difference ν after multiplication by an unrestricted key.

4.7 Differential Analysis of the PES Cipher

In [57], Daemen described a class of 235 keys for which IDEA has a differential
characteristic with probability one, under the assumption that some multiplica-
tive subkeys had value 0 or 1. The associated user keys were called weak keys.
The contribution of this section is based on [172], and consists of a similar anal-
ysis to Daemen’s, but applied to 8.5-round PES cipher, to extended-round PES,
and to PES with a new key schedule designed by Daemen. Appendix B contains
more details about the PES cipher and its key schedule.

The first step of the analysis is to search for one-round characteristics, and
the necessary restrictions on subkeys such that the former hold with probability
one (Table 4.8). The value ν = 8000x denotes the 16-bit non-zero xor-difference
used in all characteristics. This difference propagates across the addition oper-
ation independent of the subkey value.

According to Table 4.8, the largest differential weak-key class of PES uses
the one-round iterative characteristic (ν, 0, ν, 0) 1r→ (ν, 0, ν, 0). The propagation
of differences across PES and the restrictions on the subkey words are detailed
in Table 4.9. The differential weak-key class in Table 4.9 requires that the key
bits numbered 0-14, 22-57 and 75-110 be zero while key bits numbered 15-21,
58-74, 111-127 can be arbitrary, which implies a differential weak-key class of
size 241. The characteristic in Table 4.9 can also be iterated beyond 8.5 rounds.
For example, for 17-round PES, the characteristic (ν, 0, ν, 0) 17r→ (ν, 0, ν, 0) holds
for a weak-key class of size 27. For 17.5-round PES, the characteristic holds only
for the all-zero key. The all-zero key is the only key for which the characteristic
in Table 4.9 can be iterated for r-round PES for arbitrarily large r.

Another differential weak-key class for PES is listed in Table 4.10; it assumes
that the key bits numbered 16-30, 38-73, and 91-126 are zero. The key bits 0-15,
31-37, 74-90 and 127 are arbitrary, which implies a weak-key class of size 241.
Notice that the weak-key classes in Tables 4.9 and 4.10 are distinct, because
they do not share the same restriction on many key bits.

For PES with Daemen’s new key schedule ([57] and Chap. 3, Sect. 3.6), the
longest differential found has 2.5 rounds. It requires that key bits 66-69, 72 75,
77, 82-85, 88, 91, 93, 34-37, 40, 43, 45 be zero, and key bits 70, 71, 73, 74,
76, 78-80, 86, 87, 89, 90, 92, 94-96, 38, 39, 41, 42, 44, 46-48 be one. These
restrictions on 45 bits represent a class of size 283, detailed in Table 4.11.
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Table 4.7: Boomerang Distinguishers for IDEA.
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Table 4.8: One-round characteristics for PES.

Differential Characteristic Restrictions on Subkeys
δr

1r→ δr+1 Z
(r)
1 Z

(r)
2 Z

(r)
5 Z

(r)
6

(0, 0, 0, ν) 1r→ (ν, 0, ν, ν) – – – {0, 1}
(0, 0, ν, 0) 1r→ (0, 0, ν, 0) – – {0, 1} {0, 1}
(0, 0, ν, ν) 1r→ (ν, 0, 0, ν) – – {0, 1} –
(0, ν, 0, 0) 1r→ (ν, ν, ν, 0) – {0, 1} – {0, 1}
(0, ν, 0, ν) 1r→ (0, ν, 0, ν) – {0, 1} – –
(0, ν, ν, 0) 1r→ (ν, ν, 0, 0) – {0, 1} {0, 1} –
(0, ν, ν, ν) 1r→ (0, ν, ν, ν) – {0, 1} {0, 1} {0, 1}
(ν, 0, 0, 0) 1r→ (ν, 0, 0, 0) {0, 1} – {0, 1} {0, 1}
(ν, 0, 0, ν) 1r→ (0, 0, ν, ν) {0, 1} – {0, 1} –
(ν, 0, ν, 0) 1r→ (ν, 0, ν, 0) {0, 1} – – –
(ν, 0, ν, ν) 1r→ (0, 0, 0, ν) {0, 1} – – {0, 1}
(ν, ν, 0, 0) 1r→ (0, ν, ν, 0) {0, 1} {0, 1} {0, 1} –
(ν, ν, 0, ν) 1r→ (ν, ν, 0, ν) {0, 1} {0, 1} {0, 1} {0, 1}
(ν, ν, ν, 0) 1r→ (0, ν, 0, 0) {0, 1} {0, 1} – {0, 1}
(ν, ν, ν, ν) 1r→ (ν, ν, ν, ν) {0, 1} {0, 1} – –

Notice that the Daemen’s new key schedule effectively protects IDEA (and
PES) against linear attacks but not against truncated differential attacks (Chap. 5,
Sect. trunc-diff-mesh), because for the latter: (i) no weak-key assumptions are
needed; (ii) the masks 0x0dae are known; (iii) the key overlapping property still
holds. This situation is similar to the ID attacks on SAFER ciphers.

4.8 Conclusions

This chapter described the differential cryptanalysis technique as originally de-
veloped by Biham and Shamir [24], and some related methods, such as the
square/integral attack, the impossible differential attack, and the boomerang
attack, with applications to IDEA, PES, Skipjack, Hierocrypt-3/Hierocrypt-L1,
and SAFER ciphers.

In many cases, different weak-key restrictions were assumed in order to fa-
cilitate attacks and allow more rounds to be attacked compared to previous
analyses. These weak-key assumptions were always applied to the original key
schedule algorithms, which may indicate a need for their re-design.
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Table 4.9: Weak-key differential characteristic for 8.5-round PES.

Round r Differential msb15(Z
(r)
1 ) Weak-Key Class Size

1 (ν, 0, ν, 0) 1r→ (ν, 0, ν, 0) 0–14 2113

2 (ν, 0, ν, 0) 1r→ (ν, 0, ν, 0) 96–110 298

3 (ν, 0, ν, 0) 1r→ (ν, 0, ν, 0) 89–103 291

4 (ν, 0, ν, 0) 1r→ (ν, 0, ν, 0) 82–96 284

5 (ν, 0, ν, 0) 1r→ (ν, 0, ν, 0) 75–89 277

6 (ν, 0, ν, 0) 1r→ (ν, 0, ν, 0) 43–57 262

7 (ν, 0, ν, 0) 1r→ (ν, 0, ν, 0) 36–50 255

8 (ν, 0, ν, 0) 1r→ (ν, 0, ν, 0) 29–43 248

OT (ν, 0, ν, 0) 0.5r→ (ν, 0, ν, 0) 22–36 241

Table 4.10: Another weak-key differential for 8.5-round PES.

Round r Differential msb15(Z
(r)
2 ) Weak-Key Class Size

1 (0, ν, 0, ν) 1r→ (0, ν, 0, ν) 16–30 2113

2 (0, ν, 0, ν) 1r→ (0, ν, 0, ν) 112–126 298

3 (0, ν, 0, ν) 1r→ (0, ν, 0, ν) 105–119 291

4 (0, ν, 0, ν) 1r→ (0, ν, 0, ν) 98–112 284

5 (0, ν, 0, ν) 1r→ (0, ν, 0, ν) 91–105 277

6 (0, ν, 0, ν) 1r→ (0, ν, 0, ν) 59–73 262

7 (0, ν, 0, ν) 1r→ (0, ν, 0, ν) 52–66 255

8 (0, ν, 0, ν) 1r→ (0, ν, 0, ν) 45–59 248

OT (0, ν, 0, ν) 0.5r→ (0, ν, 0, ν) 38–52 241

Table 4.11: 2.5-round differential for PES with Daemen’s new key schedule.

Round r Differential msb15(Z
(r)
1 ) msb15(Z

(r)
6 )

3 (0, 0, 0, ν) 1r→ (ν, 0, ν, ν) – 66–80
4 (ν, 0, ν, ν) 1r→ (0, 0, 0, ν) 82–96 34–48

4.5 (0, 0, 0, ν) 0.5r→ (0, 0, 0, ν) – –



Chapter 5

Design and Analysis of the
MESH Ciphers

5.1 Introduction

This chapter describes and analyzes a new set of block ciphers, called MESH
[174]. These are word-oriented block ciphers whose designs are based on the
same group operations of the IDEA cipher [135, 137], namely, bitwise exclusive-
or denoted ⊕, addition in ZZ216 denoted ¢, and multiplication in GF(216 + 1)
denoted ¯, with 216 ≡ 0. The main differences to IDEA are: the flexible block
sizes (in steps of 32 bits), the larger round functions (MA-boxes), the asymmetric
key-mixing layers for odd and even rounds, and the new key schedule algorithms.
Sect. 5.2 describes the design rationales in more detail.

The software performance of MESH ciphers are estimated to be better or
comparable to that of triple-DES. The resistance of MESH ciphers to a number
of attacks such as truncated and impossible differentials, linear, square, slide and
advanced slide, algebraic, and Demirci’s attack, among others, are discussed.
The conclusion is that these ciphers seem to offer a relatively large margin of
security.

5.2 Design Rationale

Since the publication of IDEA in [137], no extended IDEA variant has being
proposed with block sizes larger than 64 bits (or word sizes larger than 16 bits).
Maybe such attempts were jeopardized due to the fact that 232 + 1 is not a
prime number,1 and thus, ZZ∗232+1 is not a finite field [160, p. 77, Fact 2.184].
The MESH designs provide an alternative approach that does not rely on the
need for larger word sizes. This motivates the design of larger MA-boxes.

1232 + 1 = 4294967297 = 641 · 6700417.

123
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All MA-boxes in the MESH ciphers involve at least three interleaved layers
of multiplications and additions (in a zig-zag sequence), in comparison to two
layers in IDEA. The new MA-boxes are designed to better resist differential and
linear attacks. The MA-boxes of some MESH ciphers have the particular feature
that not all multiplications involve subkeys directly as an operand, but rather
depend upon internal data values. These designs effectively avoid many one-
round linear relations as described in Sect. 5.11, and characteristics in Sect. 5.16.
All the new MA-boxes are bijective mappings (permutations) for any value of
the internal subkeys. This design is meant, for instance, to avoid non-surjective
attacks [194].

Another novelty of the MESH ciphers is the new key schedule algorithms.
Note that in IDEA all multiplications involve a subkey as an operand. Since the
modular multiplication is the main non-linear operator in the cipher, the key
schedule needs to be designed to avoid weak subkeys for any choice of the user
key, otherwise, all multiplications could in principle be manipulated (Daemen
[57]). The following design principles are used in the key schedule of MESH
ciphers to avoid weak keys:

• fast key avalanche: each subkey generated from the original user key
quickly depends upon all user key words. More precisely, each subkey
depends non-linearly on at least six previous subkeys. This dependence is
expressed by the exponents of a primitive polynomial (one polynomial for
each MESH cipher, to be explained further). All key schedule algorithms
interleave addition with exclusive-or operations. There is additionally a
fixed left-rotate operation, because in both ¢ and ⊕ the relative position of
the subkey bits is preserved and otherwise, two related keys with subkeys
differing only in the most significant bit could propagate this difference to
several other subkeys.

• use of fixed constants to avoid patterns in subkeys. For instance, without
the constants the user-defined key with all-zero words would result in
all subkeys being zero (independent of the non-linear mixing or the bit
rotation) for any number of rounds.

The key-collision attack (Chap. 2, Sect. 2.11) is a motivation for the key
sizes of MESH ciphers being twice the block size.

The distinct key-mixings for odd and even rounds were originally introduced
to provide round asymmetry in order to avoid slide attacks [33]. Another con-
sequence of the asymmetric key-mixings is that an even number of rounds is
required, so that encryption and decryption can use the same computational
framework.

Some common properties to IDEA and MESH ciphers include: (i) complete
diffusion is achieved in one round; (ii) no two consecutive operations are the
same in any part of these ciphers.

Three designs will be described in the following: MESH-64, MESH-96 and
MESH-128, where the suffix denotes the block size.
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5.3 The MESH-64 Block Cipher

MESH-64 is an iterated cipher with a 64-bit block size, a 128-bit key and 8.5
rounds. The last 0.5 round is the output transformation.
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Figure 5.1: Computational graph of the MESH-64 block cipher.

5.3.1 The Round Structure of MESH-64

Let X(i) = (X(i)
1 , X

(i)
2 , X

(i)
3 , X

(i)
4 ) denote the input to the i-th round of MESH-

64, 1 ≤ i ≤ 9. A round is composed of a key-mixing and an MA half-round
(Fig. 5.1). The key-mixing consists of the parallel combination of the round
input with four subkeys. The output of an odd-round key-mixing is:

(Y (i)
1 , Y

(i)
2 , Y

(i)
3 , Y

(i)
4 ) = (X(i)

1 ¯ Z
(i)
1 , X

(i)
2 ¢ Z

(i)
2 , X

(i)
3 ¢ Z

(i)
3 , X

(i)
4 ¯ Z

(i)
4 ) ,

while the output of an even-round key-mixing is:

(Y (i)
1 , Y

(i)
2 , Y

(i)
3 , Y

(i)
4 ) = (X(i)

1 ¢ Z
(i)
1 , X

(i)
2 ¯ Z

(i)
2 , X

(i)
3 ¯ Z

(i)
3 , X

(i)
4 ¢ Z

(i)
4 ) .
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The MA half-round initially forms the input to the MA-box: (Y (i)
5 , Y

(i)
6 ) =

(Y (i)
1 ⊕ Y

(i)
3 , Y

(i)
2 ⊕ Y

(i)
4 ). The MA-box consists of three layers of interleaved

multiplication and addition operations, in a zig-zag sequence, whose output is
(Y (i)

7 , Y
(i)
8 ), where2

Y
(i)
7 = ((Y (i)

5 ¯ Z
(i)
5 ¢ Y

(i)
6 )¯ Z

(i)
6 ¢ (Y (i)

5 ¯ Z
(i)
5 ))¯ Z

(i)
7 ,

Y
(i)
8 = Y

(i)
7 ¢ ((Y (i)

5 ¯ Z
(i)
5 ¢ Y

(i)
6 )¯ Z

(i)
6 ) .

The round output consists of the xor of the MA-box output with the input
block, followed by a fixed permutation π that swaps the two middle words in a
block (an involution):

X(i+1) = (Y (i)
1 ⊕ Y

(i)
8 , Y

(i)
3 ⊕ Y

(i)
8 , Y

(i)
2 ⊕ Y

(i)
7 , Y

(i)
4 ⊕ Y

(i)
7 ).

MESH-64 consists of eight rounds plus an output transformation, the latter
consisting of the involution π, and an odd-round key-mixing. Therefore, there
is no permutation π in the last round, and as a consequence, encryption and
decryption can use the same computational framework. This property applies
equally to IDEA, PES and other MESH ciphers.

5.3.2 The Key Schedule of MESH-64

The key schedule for MESH-64 is defined as follows:

• 16-bit constants ci are defined by c0 = 1, and ci = 3 · ci−1 for i > 1, with
multiplication in GF(216)/p(x), where p(x) = x16 + x5 + x3 + x2 + 1 is
a primitive polynomial in GF(2). The constant ‘3’ is represented by the
polynomial x + 1 in GF(216)/p(x).

• The 128-bit user key is partitioned into eight 16-bit words Ki, for 0 ≤ i ≤
7. These key words are assigned to subkeys Z

(1)
i+1 = Ki⊕ ci, for 0 ≤ i ≤ 6,

and Z
(2)
1 = K7 ⊕ c7.

• Each subsequent 16-bit subkey is generated as follows:3

Z
(h(i))
l(i) =

(((((
Z

(h(i−8))
l(i−8) ¢ Z

(h(i−7))
l(i−7)

)
⊕ Z

(h(i−6))
l(i−6)

)
¢

Z
(h(i−3))
l(i−3)

)
⊕ Z

(h(i−2))
l(i−2)

)
¢ Z

(h(i−1))
l(i−1)

)
≪ 7⊕ ci , (5.1)

for 8 ≤ i ≤ 59, where ‘≪ 7’ means left rotation by 7 bits, h(i) = i div 7+1,
and l(i) = i mod 7 + 1.

The key schedule of MESH-64 does not provide for on-the-fly decryption-
subkey generation, but if the last eight subkeys are stored instead of the user

2¯ has higher precedence than ⊕ and �.
3Bit rotation has higher precedence than ⊕.
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key, then the decryption subkeys can be reconstructed on-the-fly by following the
key schedule procedure backwards, without the need to compute the encryption
subkeys beforehand (the same applies to other MESH ciphers).

The key schedule of MESH-64 achieves fast key avalanche due to (5.1) being
based on the primitive polynomial q(x) = x8 + x7 + x6 + x5 + x2 + x + 1 in
GF(2), and the interleaving of ⊕ and ¢. For instance, each subkey, starting with
Z

(2)
4 , already depends upon all eight user-defined key words. The dependence

of (5.1) on q(x) can be made clear by ignoring the left rotation for a while,
changing the ¢ to ⊕, and denoting Z

(h(i))
l(i) simply as Zi. Then (5.1) becomes

Zi = Zi−8⊕Zi−7⊕Zi−6⊕Zi−3⊕Zi−2⊕Zi−1⊕ci ⇒ Zi−8 ·(Z8⊕Z7⊕Z6⊕Z5⊕
Z2⊕Z⊕1) = ci. Notice that both ¢ and ⊕ preserve the relative bit position of
its operands. The left-rotation destroys that property, so that changes only at
the most significant bit of some subkeys (in a related-key attack setting) would
not propagate to other subkeys with probability one.

The fast key avalanche implies that an attack is not more efficient in any
specific round or half-round than in the first rounds, because the round subkeys
become quickly dependent on all user-defined key words. In IDEA, each sub-
key depends upon only 16 bits of the user-defined key (there is no interaction
between key bits), and attacks starting at some intermediate rounds are more
effective than at the first round, because of varying overlap of the key bits,
according to the key schedule (Table B.1, Appendix B).

Decryption in MESH-64 uses the same framework in Fig. 5.1 as encryption,
but with transformed round subkeys. More formally, let the r-th round encryp-
tion subkeys be denoted (Z(r)

1 , . . ., Z
(r)
7 ), for 1 ≤ r ≤ 8, and (Z(9)

1 , . . ., Z
(9)
4 ),

for the output transformation. Then, the decryption round subkeys are:

• ((Z(9)
1 )−1,−Z

(9)
2 ,−Z

(9)
3 , (Z(9)

4 )−1, Z
(8)
5 , Z

(8)
6 , Z

(8)
7 ), for the first decryption

round.

• (−Z
(10−r)
1 , (Z(10−r)

3 )−1, (Z(10−r)
2 )−1,−Z

(10−r)
4 , Z

(9−r)
5 , Z

(9−r)
6 , Z

(9−r)
7 ), for

the r-th even round, r ∈ {2, 4, 6, 8}.

• ((Z(9−r)
1 )−1,−Z

(9−r)
3 ,−Z

(9−r)
2 , (Z(9−r)

4 )−1, Z
(8−r)
5 , Z

(8−r)
6 , Z

(8−r)
7 ), for the

r-th odd round, r ∈ {3, 5, 7}.

• ((Z(1)
1 )−1,−Z

(1)
2 ,−Z

(1)
3 , (Z(1)

4 )−1), for the output transformation.

5.4 The MESH-96 Block Cipher

MESH-96 is an iterated block cipher with a 96-bit block size, a 192-bit key and
10.5 rounds. The last 0.5-round is the output transformation.

5.4.1 The Round Structure of MESH-96

Let X(i) = (X(i)
1 , X

(i)
2 , X

(i)
3 , X

(i)
4 , X

(i)
5 , X

(i)
6 ) denote the input to the i-th

round of MESH-96, 1 ≤ i ≤ 11. A round is composed of a key-mixing and an
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MA half-round (Fig. 5.2). The key-mixing consists of the parallel combination
of the round input with six subkeys. The output Y (i) = (Y (i)

1 , Y
(i)
2 , Y

(i)
3 , Y

(i)
4 ,

Y
(i)
5 , Y

(i)
6 ) of an odd-round key-mixing is:

Y (i) = (X(i)
1 ¯Z

(i)
1 , X

(i)
2 ¢Z

(i)
2 , X

(i)
3 ¯Z

(i)
3 , X

(i)
4 ¢Z

(i)
4 , X

(i)
5 ¯Z

(i)
5 , X

(i)
6 ¢Z

(i)
6 ) ,

while for an even-round key-mixing the output is:

Y (i) = (X(i)
1 ¢Z

(i)
1 , X

(i)
2 ¯Z

(i)
2 , X

(i)
3 ¢Z

(i)
3 , X

(i)
4 ¯Z

(i)
4 , X

(i)
5 ¢Z

(i)
5 , X

(i)
6 ¯Z

(i)
6 ) .

Z
(1)
8

(1)
7Z

Z (1)
9

Z
(1) Z (1)
5 6Z3

(1)
Z2

(1)
Z 1

(1)

Z 1 Z2 Z3

2 3Y Y Y

Z Z5 6Z
4

5 6YY4Y1

9 more rounds

(11) (11) (11) (11) (11) (11)
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(2) (2) (2) (2) (2) (2)

65432
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4
(1)
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key−mixing 
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MA
Box

Output
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Figure 5.2: Computational graph of the MESH-96 block cipher.

The MA half-round initially forms the input to the MA-box: (Y (i)
7 , Y

(i)
8 ,

Y
(i)
9 ) = (Y (i)

1 ⊕ Y
(i)
4 , Y

(i)
2 ⊕ Y

(i)
5 , Y

(i)
3 ⊕ Y

(i)
6 ). The MA-box consists of three

layers of interleaved multiplication and addition operations, in a zig-zag order,
whose output is (Y (i)

10 , Y
(i)
11 , Y

(i)
12 ), where

Y
(i)
10 = (((Y (i)

7 ¯Z
(i)
7 ¢Y

(i)
8 )¯Y

(i)
9 ¢Z

(i)
8 )¯(Y (i)

7 ¯Z
(i)
7 ¢Y

(i)
8 )¢Y

(i)
7 ¯Z

(i)
7 )¯Z

(i)
9 ,
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Y
(i)
11 = Y

(i)
10 ¢ ((Y (i)

7 ¯ Z
(i)
7 ¢ Y

(i)
8 )¯ Y

(i)
9 ¢ Z

(i)
8 )¯ (Y (i)

7 ¯ Z
(i)
7 ¢ Y

(i)
8 ) ,

Y
(i)
12 = Y

(i)
11 ¯ ((Y (i)

7 ¯ Z
(i)
7 ¢ Y

(i)
8 )¯ Y

(i)
9 ¢ Z

(i)
8 ) .

The round output is the xor of the MA-box output with the input block, followed
by a fixed permutation π of the four middle words in a block:

X(i+1) = (Y (i)
1 ⊕Y

(i)
12 , Y

(i)
4 ⊕Y

(i)
12 , Y

(i)
5 ⊕Y

(i)
11 , Y

(i)
2 ⊕Y

(i)
11 , Y

(i)
3 ⊕Y

(i)
10 , Y

(i)
6 ⊕Y

(i)
10 ).

The output transformation consists of π and an odd-round key mixing.

5.4.2 The Key Schedule of MESH-96

The key schedule for MESH-96 is defined as follows:

• The same 16-bit constants ci as for MESH-64 are used in MESH-96.

• The 192-bit user key is partitioned into twelve 16-bit words Ki, for 0 ≤
i ≤ 11. These key words are assigned to subkeys Z

(1)
i+1 = Ki⊕ci, 0 ≤ i ≤ 8,

and Z
(2)
1 = K9 ⊕ c9, Z

(2)
2 = K10 ⊕ c10, Z

(2)
3 = K11 ⊕ c11.

• Each subsequent 16-bit subkey is generated as follows:4

Z
(h(i))
l(i) =

(((((
Z

(h(i−12))
l(i−12) ¢ Z

(h(i−8))
l(i−8)

)
⊕ Z

(h(i−6))
l(i−6)

)
¢

Z
(h(i−4))
l(i−4)

)
⊕ Z

(h(i−2))
l(i−2)

)
¢ Z

(h(i−1))
l(i−1)

)
≪ 9⊕ ci, (5.2)

for 12 ≤ i ≤ 95, where ‘≪ 9’ represents left rotation by 9 bits, h(i) =
i div 9 + 1, and l(i) = i mod 9 + 1.

The key schedule of MESH-96 achieves fast avalanche due to (5.2) being
based on the primitive polynomial t(x) = x12 + x11 + x10 + x8 + x6 + x4 + 1 in
GF(2), and the interleaving of ¢ and ⊕ operations. For example, each subkey,
starting with Z

(2)
7 , already depends upon all twelve user-defined key words. The

dependence of (5.2) on t(x) can be made clear by ignoring the left rotation for
a while, changing the ¢ to ⊕, and denoting Z

(h(i))
l(i) simply as Zi. Then, (5.2)

can be expressed as Zi = Zi−12 ⊕ Zi−8 ⊕ Zi−6 ⊕ Zi−4 ⊕ Zi−2 ⊕ Zi−1 ⊕ ci ⇒
Zi−12 · (Z12 ⊕ Z11 ⊕ Z10 ⊕ Z8 ⊕ Z6 ⊕ Z4 ⊕ 1) = ci.

Decryption in MESH-96 uses the same framework in Fig. 5.2 as encryption,
but with transformed round subkeys. Let the r-th round encryption subkeys be
denoted (Z(r)

1 , . . ., Z
(r)
9 ), for 1 ≤ r ≤ 10, and (Z(11)

1 , . . ., Z
(11)
6 ) for the output

transformation. Then, the decryption round subkeys are:

• ((Z(11)
1 )−1,−Z

(11)
2 , (Z(11)

3 )−1,−Z
(11)
4 , (Z(11)

5 )−1,−Z
(11)
6 , Z

(10)
7 , Z

(10)
8 , Z

(10)
9 )

for the first decryption round.

4Bit rotation has higher precedence than ⊕.
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• (−Z
(12−r)
1 , (Z(12−r)

4 )−1, −Z
(12−r)
5 , (Z(12−r)

2 )−1, −Z
(12−r)
3 , (Z(12−r)

6 )−1,
Z

(11−r)
7 , Z

(11−r)
8 , Z

(11−r)
9 ), for the r-th even round, r ∈ {2, 4, 6, 8, 10}.

• ((Z(11−r)
1 )−1, −Z

(11−r)
4 , (Z(11−r)

5 )−1, −Z
(11−r)
2 , (Z(11−r)

3 )−1, −Z
(11−r)
6 ,

Z
(10−r)
7 , Z

(10−r)
8 , Z

(10−r)
9 ), for the r-th odd round, r ∈ {3, 5, 7, 9}.

• ((Z(1)
1 )−1,−Z

(1)
2 , (Z(1)

3 )−1,−Z
(1)
4 , (Z(1)

5 )−1,−Z
(1)
6 ), for the output trans-

formation.

5.5 The MESH-128 Block Cipher

MESH-128 is an iterated cipher with a 128-bit block size, a 256-bit key, and
12.5 rounds. The last 0.5-round is the output transformation.

5.5.1 The Round Structure of MESH-128

Let X(i) = (X(i)
1 , X

(i)
2 , X

(i)
3 , X

(i)
4 , X

(i)
5 , X

(i)
6 , X

(i)
7 , X

(i)
8 ) denote the input

to the i-th round of MESH-128, 1 ≤ i ≤ 13. A round is composed of a key-
mixing and an MA half-round (Fig 5.3). The key-mixing consists of the parallel
combination of the round input with eight subkeys. The output Y (i)= (Y (i)

1 ,
Y

(i)
2 , Y

(i)
3 , Y

(i)
4 , Y

(i)
5 , Y

(i)
6 , Y

(i)
7 , Y

(i)
8 ) for an odd-round key-mixing is:

Y (i) = (X(i)
1 ¯ Z

(i)
1 , X

(i)
2 ¢ Z

(i)
2 , X

(i)
3 ¯ Z

(i)
3 , X

(i)
4 ¢ Z

(i)
4 ,

X
(i)
5 ¢ Z

(i)
5 , X

(i)
6 ¯ Z

(i)
6 , X

(i)
7 ¢ Z

(i)
7 , X

(i)
8 ¯ Z

(i)
8 ) ,

while for an even round the key-mixing output is:

Y (i) = (X(i)
1 ¢ Z

(i)
1 , X

(i)
2 ¯ Z

(i)
2 , X

(i)
3 ¢ Z

(i)
3 , X

(i)
4 ¯ Z

(i)
4 ,

X
(i)
5 ¯ Z

(i)
5 , X

(i)
6 ¢ Z

(i)
6 , X

(i)
7 ¯ Z

(i)
7 , X

(i)
8 ¢ Z

(i)
8 ) .

The MA half-round initially forms the input to the MA-box:

(Y (i)
9 , Y

(i)
10 , Y

(i)
11 , Y

(i)
12 ) = (Y (i)

1 ⊕ Y
(i)
5 , Y

(i)
2 ⊕ Y

(i)
6 , Y

(i)
3 ⊕ Y

(i)
7 , Y

(i)
4 ⊕ Y

(i)
8 ) .

The MA-box consists of four layers of interleaved multiplications and additions,
in a zig-zag sequence, whose output is (Y (i)

28 , Y
(i)
27 , Y

(i)
26 , Y

(i)
25 ), where the inter-

mediate steps are:
Y

(i)
13 = Y

(i)
9 ¯ Z

(i)
9 ,

Y
(i)
14 = Y

(i)
13 ¢ Y

(i)
10 ,

Y
(i)
15 = Y

(i)
14 ¯ Y

(i)
11 ,

Y
(i)
16 = Y

(i)
15 ¢ Y

(i)
12 ,
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Z
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Figure 5.3: Computational graph of the MESH-128 block cipher.

Y
(i)
17 = Y

(i)
16 ¯ Z

(i)
10 ,

Y
(i)
18 = Y

(i)
15 ¢ Y

(i)
17 ,

Y
(i)
19 = Y

(i)
14 ¯ Y

(i)
18 ,

Y
(i)
20 = Y

(i)
13 ¢ Y

(i)
19 ,

Y
(i)
21 = Y

(i)
20 ¯ Z

(i)
11 ,

Y
(i)
22 = Y

(i)
19 ¢ Y

(i)
21 ,

Y
(i)
23 = Y

(i)
18 ¯ Y

(i)
22 ,

Y
(i)
24 = Y

(i)
17 ¢ Y

(i)
23 ,

Y
(i)
25 = Y

(i)
24 ¯ Z

(i)
12 ,
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Y
(i)
26 = Y

(i)
23 ¢ Y

(i)
25 ,

Y
(i)
27 = Y

(i)
22 ¯ Y

(i)
26 ,

Y
(i)
28 = Y

(i)
21 ¢ Y

(i)
27 .

The round output is the xor of the MA-box output with the input block, followed
by a fixed permutation π of the middle six words in a block (an involution):

X(i+1) = (Y (i)
1 ⊕ Y

(i)
25 , Y

(i)
5 ⊕ Y

(i)
25 , Y

(i)
6 ⊕ Y

(i)
26 , Y

(i)
7 ⊕ Y

(i)
27 ,

Y
(i)
2 ⊕ Y

(i)
26 , Y

(i)
3 ⊕ Y

(i)
27 , Y

(i)
4 ⊕ Y

(i)
28 , Y

(i)
8 ⊕ Y

(i)
28 ).

The output transformation consists of π and an odd-round key mixing.

5.5.2 The Key Schedule of MESH-128

The key schedule for MESH-128 is defined as follows:

• The same 16-bit constants ci as for MESH-64 are used in MESH-128.

• The 256-bit key is partitioned into sixteen 16-bit words Ki, 0 ≤ i ≤ 15.
The first sixteen subkey words are assigned to Z

(1)
i+1 = Ki⊕ ci, 0 ≤ i ≤ 11,

and Z
(2)
j mod 12+1 = Kj ⊕ cj , 12 ≤ j ≤ 15.

• Each subsequent 16-bit subkey is generated as follows:5

Z
(h(i))
l(i) =

(((((
Z

(h(i−16))
l(i−16) ¢ Z

(h(i−13))
l(i−13)

)
⊕ Z

(h(i−12))
l(i−12)

)
¢

Z
(h(i−8))
l(i−8)

)
⊕ Z

(h(i−2))
l(i−2)

)
¢ Z

(h(i−1))
l(i−1)

)
≪ 11⊕ ci, (5.3)

for 16 ≤ i ≤ 151, where ‘≪ 11’ represents left rotation by 11 bits, h(i) =
i div 12 + 1, and l(i) = i mod 12 + 1.

The key schedule of MESH-128 achieves fast avalanche due to (5.3) being
based on the primitive polynomial r(x) = x16 + x15 + x14 + x8 + x4 + x3 + 1 in
GF(2), and the interleaving of ¢ and ⊕ operations. For example, each subkey
starting with Z

(2)
10 , already depends upon all sixteen user-defined key words.

The dependence of (5.3) on r(x) can be made clear by ignoring the left rotation
for a while, changing the ¢ to ⊕, and denoting Z

(h(i))
l(i) simply as Zi. Then, (5.3)

can be expressed as Zi = Zi−16 ⊕ Zi−13 ⊕ Zi−12 ⊕ Zi−8 ⊕ Zi−2 ⊕ Zi−1 ⊕ ci ⇒
Zi−16 · (Z16 ⊕ Z15 ⊕ Z14 ⊕ Z8 ⊕ Z4 ⊕ Z3 ⊕ 1) = ci.

Decryption in MESH-128 uses the same framework in Fig. 5.3 as for encryp-
tion, but with transformed round subkeys. If the encryption subkeys for the
r-th round are denoted (Z(r)

1 , . . . , Z
(r)
12 ), for 1 ≤ r ≤ 12, and (Z(13)

1 , . . . , Z
(13)
8 )

for the output transformation, then the decryption round subkeys are:

5Bit rotation has higher precedence than ⊕.
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• ((Z(13)
1 )−1, −Z

(13)
2 , (Z(13)

3 )−1, −Z
(13)
4 , −Z

(13)
5 , (Z(13)

6 )−1, −Z
(13)
7 , (Z(13)

8 )−1,
Z

(12)
9 , Z

(12)
10 , Z

(12)
11 , Z

(12)
12 ), for the first decryption round.

• (−Z
(14−r)
1 , (Z(14−r)

5 )−1, −Z
(14−r)
6 , (Z(14−r)

7 )−1, (Z(14−r)
2 )−1, −Z

(14−r)
3 ,

(Z(14−r)
4 )−1, −Z

(14−r)
8 , Z

(13−r)
9 , Z

(13−r)
10 , Z

(13−r)
11 , Z

(13−r)
12 ), for the r-th

even round, r ∈ {2, 4, 6, 8, 10, 12}.

• ((Z(13−r)
1 )−1, −Z

(13−r)
5 , (Z(13−r)

6 )−1, −Z
(13−r)
7 , −Z

(13−r)
2 , (Z(13−r)

3 )−1,
−Z

(13−r)
4 , (Z(13−r)

8 )−1, Z
(12−r)
9 , Z

(12−r)
10 , Z

(12−r)
11 , Z

(12−r)
12 ), for the r-th

odd round, r ∈ {3, 5, 7, 9, 11}.

• ((Z(1)
1 )−1,−Z

(1)
2 , (Z(1)

3 )−1,−Z
(1)
4 ,−Z

(1)
5 , (Z(1)

6 )−1,−Z
(1)
7 , (Z(1)

8 )−1) for the
output transformation.

In summary, Table 5.1 compares the main parameters for IDEA and MESH
ciphers. Table 5.2 lists the 16-bit constants ci used in the key schedule algo-
rithms of MESH ciphers.

Table 5.1: Main parameters for IDEA and some MESH ciphers.

Cipher Block Key #Rounds #Operations #Subkeys
Size Size ¢ ⊕ ¯ ¢ † ¯ ]

IDEA 64 128 8.5 34 48 34 18 34
MESH-64 64 128 8.5 42 48 42 18 42
MESH-96 96 192 10.5 73 90 83 43 53
MESH-128 128 256 12.5 148 144 148 52 100

]: number of multiplicative subkey words.
†: number of additive subkey words.

5.6 Truncated Differential Attacks

Truncated differential analysis of MESH ciphers followed similarly to the attack
of Borst et al. on IDEA in [43]. The difference operator is exclusive-or:

X ′ = ∆X = X ⊕X∗.

Under this difference, the MESH ciphers are not Markov ciphers, and therefore,
the Hypothesis of Stochastic Equivalence (Chap. 4, Assumption 4.1) does not
hold.

5.6.1 Truncated Differential Attacks on MESH-64

The differential analysis of MESH-64 is similar to that of IDEA in [43]. Let
P = (P1, P2, P3, P4) denote the plaintext, and C = (C1, C2, C3, C4) be the
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Table 5.2: Constants in the key schedule algorithms of the MESH ciphers.

i c8i c8i+1 c8i+2 c8i+3 c8i+4 c8i+5 c8i+6 c8i+7

0 0001x 0003x 0005x 000fx 0011x 0033x 0055x 00ffx
1 0101x 0303x 0505x 0f0fx 1111x 3333x 5555x ffffx
2 002cx 0074x 009cx 01a4x 02ecx 0734x 095cx 1be4x
3 2c2cx 7474x 9c9cx a589x eeb6x 33f7x 5419x fc2bx
4 0450x 0cf0x 1510x 3f30x 4150x c3f0x 443dx cc47x
5 54e4x fd2cx 0759x 09ebx 1a3dx 2e47x 72c9x 975bx
6 b9c0x ca6dx 5e9ax e3aex 24dfx 6d61x b7a3x d8c8x
7 6975x bb9fx cc8cx 55b9x fecbx 0370x 0590x 0eb0x
8 13d0x 3470x 5c90x e5b0x 2efdx 7307x 9509x bf36x
9 c177x 43b4x c4dcx 4d49x d7dbx 7840x 88c0x 996dx
10 ab9ax fc83x 05a8x 0ef8x 1308x 3518x 5f28x e178x
11 23a5x 64efx ad31x f77ex 19afx 2af1x 7f13x 8135x
12 8372x 85bbx 8ee0x 930dx b53ax df63x 6188x a298x
13 e785x 28a2x 79e6x 8a2ax 9e53x a2d8x e745x 29e2x
14 7a26x 8e6ax 9293x b798x d885x 69a2x bae6x cf07x
15 5124x f36cx 1599x 3eabx 43fdx c407x 4c24x d46cx
16 7c99x 85abx 8ed0x 935dx b5cax de73x 62b8x a7c8x
17 e875x 38b2x 49d6x da7ax 6ea3x b3e5x d402x 7c2bx
18 847dx 8caax 95d3x be58x c2c5x 4762x c9a6x 5ac7x

ciphertext. The attack starts by choosing a text structure consisting of 232

plaintexts where P1 and P3 take all possible values, and P2 and P4 are fixed.
One structure can generate up to 232 · (232 − 1)/2 ≈ 263 pairs with difference
P ′ = (A, 0, B, 0), where A,B ∈ ZZ16

2 . The truncated differential for the attack
has the form:

(A, 0, B, 0)2
−16

→ (C, 0, C, 0)
(0,0)

1→(0,0)−→ (C, C, 0, 0)

(C,C, 0, 0) 1→(D, E, 0, 0)
(D,E)

2−32
→ (E,D)−→ (0, D, 0, E)

(0, D, 0, E)2
−16

→ (0, F, 0, F )
(0,0)

1→(0,0)−→ (0, 0, F, F )

(0, 0, F, F ) 1→(0, 0, G,H) , (5.4)

where A,B, C,D, E, F, G,H ∈ ZZ16
2 . In each line of (5.4) the leftmost arrow

indicates that the 4-word difference on the left-hand side causes the difference
in the middle after one key-mixing half-round, with the indicated probability on
top of the arrow. The middle 4-word difference then causes the right-hand side
difference across the MA half-round of MESH-64, with the indicated probability
(on top of the arrow). The truncated differential (5.4) has average probability
2−64 over all text pairs and keys. A symmetric truncated differential for MESH-
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64, with the same average probability, is:

(0, A, 0, B)2
−16

→ (0, C, 0, C)
(0,0)

1→(0,0)−→ (0, 0, C, C)

(0, 0, C, C) 1→(0, 0, D, E)
(D,E)

2−32
→ (E,D)−→ (D, 0, E, 0)

(D, 0, E, 0)2
−16

→ (F, 0, F, 0)
(0,0)

1→(0,0)−→ (F, F, 0, 0)

(F, F, 0, 0) 1→(G,H, 0, 0) . (5.5)

Both differentials can be used in a key-recovery attack on 3.5-round MESH-64.
The attack, using (5.4), considers only text pairs for which C ′1 = C ′2 = 0 after
3.5 rounds. Thus, about 263 · 2−32 = 231 pairs survive this filtering. For each
surviving pair, the following two equations are verified:

(P1 ¯ Z
(1)
1 )⊕ (P ∗1 ¯ Z

(1)
1 ) = (P3 ¢ Z

(1)
3 )⊕ (P ∗3 ¢ Z

(1)
3 ) , (5.6)

(C3 ¯ (Z(4)
3 )−1)⊕ (C∗3 ¯ (Z(4)

3 )−1) = (C4 ¯ Z
(4)
4 )⊕ (C∗4 ¯ Z

(4)
4 ) . (5.7)

On average about 216 pairs (Z(1)
1 , Z

(1)
3 ) satisfy (5.6). Likewise, about 216 pairs

(Z(4)
3 , Z

(4)
4 ) satisfy (5.7). According to the key schedule of MESH-64, the latter

two subkeys can be expressed as:

Z
(4)
3 = (((((Z(3)

2 ¢ Z
(3)
3 )⊕ Z

(3)
4 ) ¢ Z

(3)
7 )⊕ Z

(4)
1 ) ¢ Z

(4)
2 ) ≪ 7⊕ c23 ,

Z
(4)
4 = (((((Z(3)

3 ¢ Z
(3)
4 )⊕ Z

(3)
5 ) ¢ Z

(4)
1 )⊕ Z

(4)
2 ) ¢ Z

(4)
3 ) ≪ 7⊕ c24 ,

which means that they cannot be uniquely determined from knowledge of (Z(1)
1 ,

Z
(1)
3 ) only. Therefore, the attack recovers 64 subkey bits at once. The MSBs of

Z
(1)
3 and Z

(4)
4 can not be uniquely determined either, due to the absence of the

carry bit from the MSB position. Each filtered pair suggests 232 64-bit subkeys.
Thus, the probability of a wrong subkey being suggested is 232 · 2−64 = 2−32.
The signal-to-noise ratio (Chap. 4, Def. 4.7) is:

S/N =
2−64

2−32 · 2−32
= 1 .

From the point-of-view of the original differential attack in [24] it would seem
that the current truncated differential cannot distinguish the correct subkey
from the wrong ones. However, the probability of the differential is very much
key-dependent, implying that for some keys the probability is higher than the
average (S/N > 1), while for other keys, it is lower (S/N < 1). The farther
the actual probability of the differential differs from the average, the faster the
correct subkeys can be identified. Similar to [43], a ranking of the eight most
and eight least suggested keys is recorded during an attack. If the correct key
is in this ranking, then the attack is considered successful.
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Table 5.3: Success probability and data complexity for a differential attack on
3.5-round MESH-64(8).

#Keys/210 #Structures Data
in MESH-64(8) (Chosen Plaintexts)

10.54 % 1 24

10.74 % 2 25

11.23 % 4 26

12.40 % 8 27

13.47 % 16 28

Attacks on 3.5 rounds of mini MESH-64 with 8-bit blocks, denoted MESH-
64(8), have been implemented in order to help estimate the success rate for
MESH-64. The results are summarized in Table 5.3.

Similarly, the results of attack simulations on the 16-bit block mini-version
of MESH-64, denoted MESH-64(16), for a sample of 210 randomly chosen keys
are listed in Table 5.4. The average probability computed from the 210 keys was
p ≈ 2−15.62, compared to the expected 2−16.

Table 5.4: Estimated probability of the differential (5.4) for MESH-64(16).

#Keys/210 Probability
3.12 % p = 0
5.56 % 0 < p ≤ 2−18

16.89 % 2−18 < p ≤ 2−17

31.83 % 2−17 < p ≤ 2−16

30.85 % 2−16 < p ≤ 2−15

11.71 % 2−15 < p ≤ 1

Attacks on 3.5 rounds of MESH-64(16) have been implemented; the results
are summarized in Table 5.5 and indicate that a smaller fraction of the subkeys
could be identified by the differential (5.4), compared to similar attacks on a
mini-version of IDEA [43]. This is a consequence of the larger MA-box.

According to Table 5.3 the success rates for attacks on 3.5-round MESH-
64(8) are about 11.23%, 12.40% and 13.47% with 23n/4, 27n/8 and 2n chosen
plaintexts, respectively, where n = 8 is the block size. Similarly, Tables 5.5
shows that the success rates for MESH-64(16) are about 12.01%, 25.19%, and
40.33%, respectively, with 23n/4, 27n/8, and 2n chosen plaintexts, where n =
16. It is estimated that for MESH-64(32), namely, with 32-bit blocks, and for
MESH-64, success rates of about 12.84%, 51.7% and 80% can be achieved with
about 23n/4, 27n/8, and 2n chosen plaintexts, respectively.

Estimates for the attack complexity on MESH-64, using (5.4), to recover Z
(1)
1 ,
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Table 5.5: Success probability and data complexity for a differential attack on
3.5-round MESH-64(16) and IDEA(16).

#Keys/210 #Keys/210 #Structures Data
in IDEA(16) in MESH-64(16) (Chosen Plaintexts)

25 % 11.81 % 16 212

40 % 16.79 % 32 213

51 % 25.09 % 64 214

59 % 33.30 % 128 215

67 % 39.06 % 256 216

Z
(1)
3 , Z

(4)
3 , and Z

(4)
4 , are as follows: for each structure used the input plaintext

pairs are filtered according to the zero output differences of the differential. For
the surviving pairs, some subkeys at both ends of the differential are guessed
exhaustively, and are selected depending on equal difference words (for example,
equation (5.6)). The eight most suggested and the eight least suggested subkeys
are collected in a list (ranking). If the correct subkeys are in this ranking the
attack is considered successful. The final complexity is measured in terms of
the number of 3.5-round computations equivalent to the effort in solving all
equations. The complexity calculation uses the following formula: (#structures)
× (#surviving pairs per structure) × (#equations) × (#key pairs to find per
equation) × (#operations per 3.5 rounds). The number of structures, for 80%
success rate (same as in [43] for IDEA), is estimated as 264−32 = 232, since each
structure contains 232 plaintexts. The number of surviving pairs per structure
is 232(232 − 1) · 2−1 · 2−32 ≈ 231. The number of equations to be satisfied
is two, (5.6) and (5.7). The number of subkeys satisfying each equation is
about 216. The number of operations6 per equation compared to the number of
operations in 3.5 rounds is about 6

46 ≈ 2−3. The time complexity is therefore
232 ·231 ·2 ·216 ·2−3 ≈ 277 3.5-round MESH-64 encryptions. The data complexity
is 264 chosen plaintexts; the memory requirement is 232 64-bit blocks. Similarly,
the differential (5.5) allows to discover Z

(1)
2 , Z

(1)
4 , Z

(4)
1 , and Z

(4)
2 with the same

complexities, by checking the equations (P2¢Z
(1)
2 )⊕(P ∗2 ¢Z

(1)
2 ) = (P4¯Z

(1)
4 )⊕

(P ∗4 ¯Z
(1)
4 ), and (C1 ¯Z

(4)
1 )⊕ (C∗1 ¯Z

(4)
1 ) = (C2¯ (Z(4)

2 )−1)⊕ (C∗2 ¯ (Z(4)
2 )−1).

The remaining 64 user key bits can be found by exhaustive search.

An attack on 4-round MESH-64 can guess the subkeys Z
(4)
5 , Z

(4)
6 , Z

(4)
7 , and

apply the previous attack on 3.5 rounds, with time complexity7 of 278+48 = 2126

4-round computations.

6A table of 232 16-bit words are pre-computed to speed up the multiplications in the attack.
7The time complexity doubles because of the second differential (5.5).
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5.6.2 Truncated Differential Attacks on MESH-96

The differential analysis of MESH-96 uses the following differentials, where
A,B,C, D,E, F, G, H, I, J,K, L ∈ ZZ16

2 and with average probability 2−112:

(A,B, 0, C, D, 0)2
−32

→ (E,F, 0, E, F, 0)
(0,0,0)

1→(0,0,0)−→ (E,E, F, F, 0, 0)

(E, E, F, F, 0, 0)2
−16

→ (G,H, I,G, 0, 0)
(0,H,I)

2−48
→ (I,H,G)−→ (0, 0,H, 0, 0, I)

(0, 0,H, 0, 0, I)2
−16

→ (0, 0, J, 0, 0, J)
(0,0,0)

1→(0,0,0)−→ (0, 0, 0, 0, J, J)

(0, 0, 0, 0, J, J) 1→(0, 0, 0, 0,K, L) , (5.8)

There are two additional truncated differentials with the same probability, (5.9)
and (5.10):

(A, 0, B,C, 0, D)2
−32

→ (E, 0, F, E, 0, F )
(0,0,0)

1→(0,0,0)−→ (E, E, 0, 0, F, F )

(E, E, 0, 0, F, F )2
−16

→ (G,H, 0, 0,H, I)
(G,0,I)

2−48
→ (I,H,G)−→ (0, G, 0, 0, I, 0)

(0, G, 0, 0, I, 0)2
−16

→ (0, J, 0, 0, J, 0)
(0,0,0)

1→(0,0,0)−→ (0, 0, J, J, 0, 0)

(0, 0, J, J, 0, 0) 1→(0, 0,K, L, 0, 0) , (5.9)

(0, A,B, 0, C, D)2
−32

→ (0, E, F, 0, E, F )
(0,0,0)

1→(0,0,0)−→ (0, 0, E, E, F, F )

(0, 0, E,E, F, F )2
−16

→ (0, 0, G, H, I, G)
(H,I,0)

2−48
→ (G,I,H)−→ (H, 0, 0, I, 0, 0)

(H, 0, 0, I, 0, 0)2
−16

→ (J, 0, 0, J, 0, 0)
(0,0,0)

1→(0,0,0)−→ (J, J, 0, 0, 0, 0)

(J, J, 0, 0, 0, 0) 1→(K,L, 0, 0, 0, 0) . (5.10)

A differential attack on MESH-96 using (5.8), follows a similar procedure as for
MESH-64, but recover Z

(1)
1 , Z

(1)
4 , Z

(4)
3 , Z

(4)
4 , Z

(4)
5 , and Z

(4)
6 , by filtering subkey

values according to the equations:

(P1 ¯ Z
(1)
1 )⊕ (P ∗1 ¯ Z

(1)
1 ) = (P4 ¢ Z

(1)
4 )⊕ (P ∗4 ¢ Z

(1)
4 ) , (5.11)

(P2 ¢ Z
(1)
2 )⊕ (P ∗2 ¢ Z

(1)
2 ) = (P5 ¯ Z

(1)
5 )⊕ (P ∗5 ¯ Z

(1)
5 ) , (5.12)

(C5 ¯ Z
(4)
5 )⊕ (C∗5 ¯ Z

(4)
5 ) = (C6 ¯ (Z(4)

6 )−1)⊕ (C∗6 ¯ (Z(4)
6 )−1) . (5.13)

A conservative estimate for the attack complexity on 3.5-round MESH-96
follows a similar reasoning as for MESH-64: (#structures) × (#surviving pairs
per structure) × (#equations) × (#key pairs to find per equation) × (#oper-
ations per 3.5 rounds). The number of structures, for about 80% success rate,
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is estimated as 296−64 = 232, since each structure contains 264 plaintexts. The
number of surviving pairs per structure is 264(264 − 1) · 2−1 · 2−64 ≈ 263. The
number of equations to be satisfied is three, (5.11), (5.12), and (5.13). The
number of subkeys satisfying each equation is about 216. The number of opera-
tions per equation compared to the operations in 3.5 rounds is about 6

78 = 1
13 .

The time complexity is therefore, about 232 · 263 · 3 · 216 · 1
13 ≈ 2109 3.5-round

MESH-96 encryptions. The data complexity is 296 chosen plaintexts; the mem-
ory requirements correspond to 264 96-bit blocks.

The differential (5.9) can further recover Z
(1)
2 , Z

(1)
5 , Z

(4)
1 , and Z

(4)
2 . Finally,

(5.10) can be used to find Z
(1)
3 , Z

(1)
6 . In total, the first 96 user key bits are

directly recovered. The remaining 96 user key bits can be found by exhaustive
search.

An attack on 4-round MESH-96 can guess the subkeys Z
(4)
7 , Z

(4)
8 , Z

(4)
9 , and

apply the previous attack on 3.5 rounds, resulting in time complexity 2109+48 =
2157 4-round computations.

5.6.3 Truncated Differential Attacks on MESH-128

A truncated differential attack on 3.5-round MESH-128 can start with the fol-
lowing differential, where A, B, C, D, E, F , G, H, I, J , K, L, M , N , O,
P ∈ ZZ16

2 and with average probability 2−128:

(A, 0, 0, B, C, 0, 0, D)
2−32
→ (E, 0, 0, F, E, 0, 0, F )

(0,0,0,0)
1→(0,0,0,0)−→ (E, E, 0, 0, 0, 0, F, F )

(E, E, 0, 0, 0, 0, F, F )
1→(G, H, 0, 0, 0, 0, I, J)

(G,H,I,J)
2−64
→ (J,I,H,G)−→ (0, G, H, 0, 0, I, J, 0)

(0, G, H, 0, 0, I, J, 0)
2−32
→ (0, K, L, 0, 0, K, L, 0)

(0,0,0,0)
1→(0,0,0,0)−→ (0, 0, K, L, K, L, 0, 0)

(0, 0, K, L, K, L, 0, 0)
1→(0, 0, M, N, O, P, 0, 0) . (5.14)

A symmetric truncated differential to (5.14), with the same probability, is:

(0, A, B, 0, 0, C, D, 0)
2−32
→ (0, E, F, 0, 0, E, F, 0)

(0,0,0,0)
1→(0,0,0,0)−→ (0, 0, E, F, E, F, 0, 0)

(0, 0, E, F, E, F, 0, 0)
1→(0, 0, G, H, I, J, 0, 0)

(I,J,G,H)
2−64
→ (H,G,J,I)−→ (I, 0, 0, G, J, 0, 0, H)

(I, 0, 0, G, J, 0, 0, H)
2−32
→ (K, 0, 0, L, K, 0, 0, L)

(0,0,0,0)
1→(0,0,0,0)−→ (K, K, 0, 0, 0, 0, L, L)

(K, K, 0, 0, 0, 0, L, L)
1→(M, N, 0, 0, 0, 0, O, P ) . (5.15)

A truncated differential attack on 3.5-round MESH-128, using (5.14), follows
a similar procedure as for MESH-96, but recovers Z

(1)
1 , Z

(1)
4 , Z

(1)
5 , Z

(1)
8 , Z

(4)
3 ,

Z
(4)
4 , Z

(4)
5 , and Z

(4)
6 , by filtering subkey values according to the equations:

(P1 ¯ Z
(1)
1 )⊕ (P ∗1 ¯ Z

(1)
1 ) = (P5 ¢ Z

(1)
5 )⊕ (P ∗5 ¢ Z

(1)
5 ) , (5.16)

(P4 ¢ Z
(1)
4 )⊕ (P ∗4 ¢ Z

(1)
4 ) = (P8 ¯ Z

(1)
8 )⊕ (P ∗8 ¯ Z

(1)
8 ) , (5.17)
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(C3 ¯ Z
(4)
3 )⊕ (C∗3 ¯ Z

(4)
3 ) = (C5 ¯ (Z(4)

5 )−1)⊕ (C∗5 ¯ (Z(4)
5 )−1) , (5.18)

(C4 ¯ (Z(4)
4 )−1)⊕ (C∗4 ¯ (Z(4)

4 )−1) = (C6 ¯ Z
(4)
6 )⊕ (C∗6 ¯ Z

(4)
6 ) . (5.19)

Conservative complexity estimates are based on the results of MESH-64, and
use the following formula: (#structures) × (#surviving pairs per structure)
× (#equations) × (#key pairs to find per equation) × (#operations per 3.5
rounds). The number of structures is estimated as 2128−64 = 264, since each
structure contains 264 plaintexts. The number of surviving pairs per structure
is 264(264 − 1) · 2−1 · 2−64 ≈ 263. The number of equations to be satisfied is
four: (5.16), (5.17), (5.18), and (5.19). The number of subkeys satisfying each
equation is about 216. The number of operations per equation compared to
the number of operations in 3.5 rounds is about 6

116 . The time complexity is
therefore 264 · 263 · 4 · 216 · 6

116 ≈ 2141 3.5-round MESH-128 encryptions. The
data complexity is 2128 chosen plaintexts; the memory requirements correspond
to 264 128-bit blocks.

Further, (5.15) can be used to discover Z
(1)
2 , Z

(1)
3 , Z

(1)
6 , Z

(1)
7 , Z

(4)
1 , Z

(4)
2 ,

Z
(4)
7 , and Z

(4)
8 , with the same complexities.8 The remaining 128 user key bits

can be found by exhaustive search.
An attack on 4 rounds could guess the subkeys Z

(4)
9 , Z

(4)
10 , Z

(4)
11 , Z

(4)
12 , and

apply the previous attack on 3.5 rounds, resulting in a time complexity of
2142+64 = 2206 4-round computations.

5.7 Impossible Differential Attacks

Impossible differential (ID) attacks on MESH ciphers followed the framework of
the attack by Biham et al. on IDEA in [19] (Chap. 4, Sect. 4.5). The difference
operator is exclusive-or.

5.7.1 Impossible Differential Attacks on MESH-64

An ID attack on the first 3.5 rounds of MESH-64 uses the 2.5-round impossible

differential (a, 0, a, 0)
2.5r

6→ (b, b, 0, 0), with a, b 6= 0, starting after the first key
mixing until the end of the third round. The difference operator is exclusive-
or. The attack proceeds as follows: let (X(i)

1 , X
(i)
2 , X

(i)
3 , X

(i)
4 ) be the input

to the i-th round, and (Y (i)
1 , Y

(i)
2 , Y

(i)
3 , Y

(i)
4 ) be the output of the i-th key-

mixing half-round. Choose a text structure consisting of 232 plaintexts with
fixed X

(1)
2 and X

(1)
4 , and with all possible values for X

(1)
1 and X

(1)
3 . There are

about 232 · (232 − 1)/2 ≈ 263 plaintext pairs with difference (X(1)′

1 , 0, X
(1)′

3 , 0).
Collect about 231 pairs from the structure whose ciphertext difference after
3.5 rounds satisfies Y

(4)′

3 = 0 and Y
(4)′

4 = 0. For each such pair try all 232

subkeys (Z(1)
1 , Z

(1)
3 ) and partially encrypt (X(1)

1 , X
(1)
3 ) and (X(1)∗

1 , X
(1)∗
3 ) in

the two plaintexts of the pair. Collect about 216 subkeys (Z(1)
1 , Z

(1)
3 ) satisfying

8The time complexity doubles due to the second differential (5.15).
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(X(1)
1 ¯Z

(1)
1 )⊕ (X(1)∗

1 ¯Z
(1)
1 ) = (X(1)

3 ¢ Z
(1)
3 )⊕ (X(1)∗

3 ¢ Z
(1)
3 ). This step takes

217 time, and 216 memory (make a table of 16-bit xor-differences for each of the
216 candidates for Z

(1)
1 , and look for matches with differences resulting from

encryptions of the 216 subkey candidates for Z
(1)
3 ). Next, try all 232 subkeys

(Z(4)
1 , Z

(4)
2 ), and partially decrypt (Y (4)

1 , Y
(4)
2 ) in each of the two ciphertexts of

the pair. Collect about 216 subkeys (Z(4)
1 , Z

(4)
2 ) such that X

(4)′

1 = X
(4)′

2 , that
is, (Y (4)

1 ¯ Z
(4)
1 )⊕ (Y (4)∗

1 ¯ Z
(4)
1 ) = (Y (4)

2 ¯ (Z(4)
2 )−1)⊕ (Y (4)∗

2 ¯ (Z(4)
2 )−1). This

step takes 217 time and 216 memory. Make a list of all 232 64-bit subkeys (Z(1)
1 ,

Z
(1)
3 , Z

(4)
1 , Z

(4)
2 ), combining the two previous steps. Those subkeys cannot be

the correct values, because they encrypt a pair of the impossible differential.
Each pair defines a list of about 232 64-bit wrong values. It is expected that
after 90 structures, the number of remaining wrong subkeys is:

264 · (1− 232

264
)2

31·90 ≈ 264

e45
≈ 2−0.92.

Therefore, the correct subkey can be uniquely identified. The attack requires 90·
232 ≈ 238.5 chosen plaintexts. The memory complexity is 261 bytes, for sieving
the correct 64-bit subkeys. The time complexity is 231 ·90·(217+217) ≈ 256 steps.

The 2.5-round impossible differential (0, a, 0, a)
2.5r

6→ (0, 0, b, b), with a, b 6= 0, can
be used to further recover (Z(1)

2 , Z
(1)
4 , Z

(4)
3 , Z

(4)
4 ). The joint time complexity is

about 257 steps. If a step consists of a modular multiplication and there are 17
multiplications in 3.5 rounds, then the latter corresponds to 257 · 1

17 ≈ 253 3.5-
round computations. The data complexity amounts to 239.5 chosen plaintexts,
and 261 bytes of memory are needed. In total, the first 64 user key bits are
recovered. The remaining 64 user key bits can be obtained by exhaustive search,
and the final time complexity becomes 264 3.5-round computations.

An attack on 4-round MESH-64 could guess (Z(4)
5 , Z

(4)
6 , Z

(4)
7 ) of an addi-

tional MA half-round and apply the previous attack on 3.5 rounds. The time
complexity increases to 264+48 = 2112 4-round computations. An attack on 4.5-
round MESH-64 could further guess Z

(5)
i , 1 ≤ i ≤ 4 and apply the attack on

4 rounds, but the complexity would be 2112+64 = 2176 4.5-round computations,
which is more than an exhaustive key search.

If the attack on 3.5-rounds had started from the second round instead of the
first, then an attack on 4.5-round could have guessed the three subkeys of the
the first MA-box, but then: (i) the user key bits would not have been recovered;
(ii) the complexity would have been 2112+48 = 2160 still more than an exhaustive
key search.

5.7.2 Impossible Differential Attacks on MESH-96

There are many more 2.5-round impossible differentials for MESH-96 in compar-
ison to MESH-64 (all of them starting after the first key-mixing half-round). One
example differential pattern is (a, 0, 0, a, 0, 0) that cannot cause (b, b, c, c, 0, 0) af-
ter 2.5-round MESH-96, where a, b, c 6= 0. The proof is as follows: consider a
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Table 5.6: List of 2.5-round impossible differentials for MESH-96.

(a, 0, 0, a, 0, 0)
2.5r

6→ (b, b, 0, 0, 0, 0) (†) (a, 0, 0, a, 0, 0)
2.5r

6→ (0, 0, b, b, 0, 0) (†)
(a, 0, 0, a, 0, 0)

2.5r

6→ (0, 0, 0, 0, b, b) (†) (a, 0, 0, a, 0, 0)
2.5r

6→ (b, b, c, c, 0, 0)

(a, 0, 0, a, 0, 0)
2.5r

6→ (b, b, 0, 0, c, c) (0, a, 0, 0, a, 0)
2.5r

6→ (b, b, 0, 0, 0, 0) (†)
(0, a, 0, 0, a, 0)

2.5r

6→ (0, 0, b, b, 0, 0) (†) (0, a, 0, 0, a, 0)
2.5r

6→ (0, 0, 0, 0, b, b) (†)
(0, a, 0, 0, a, 0)

2.5r

6→ (b, b, c, c, 0, 0) (0, a, 0, 0, a, 0)
2.5r

6→ (0, 0, b, b, c, c)

(0, 0, a, 0, 0, a)
2.5r

6→ (b, b, 0, 0, 0, 0) (†) (0, 0, a, 0, 0, a)
2.5r

6→ (0, 0, b, b, 0, 0) (†)
(0, 0, a, 0, 0, a)

2.5r

6→ (0, 0, 0, 0, b, b) (†) (0, 0, a, 0, 0, a)
2.5r

6→ (b, b, 0, 0, c, c)

(0, 0, a, 0, 0, a)
2.5r

6→ (0, 0, b, b, c, c) (a, b, 0, a, b, 0)
2.5r

6→ (c, c, 0, 0, 0, 0) (†)
(a, b, 0, a, b, 0)

2.5r

6→ (0, 0, c, c, 0, 0) (†) (a, 0, b, a, 0, b)
2.5r

6→ (c, c, 0, 0, 0, 0) (†)
(a, 0, b, a, 0, b)

2.5r

6→ (0, 0, 0, 0, c, c) (†) (0, a, b, 0, a, b)
2.5r

6→ (0, 0, c, c, 0, 0) (†)
(0, a, b, 0, a, b)

2.5r

6→ (0, 0, 0, 0, c, c) (†)

text pair with input difference (a, 0, 0, a, 0, 0), for a 6= 0. In such a pair, the
inputs and outputs of the first MA-box have difference zero. Therefore, the
difference after the first MA half-round is (a, a, 0, 0, 0, 0). After the key-mixing
half-round, the difference becomes (d, e, 0, 0, 0, 0), for d, e 6= 0. Similarly, con-
sider a text pair with output difference (b, b, c, c, 0, 0) after 2.5 rounds. In such a
pair, the difference before the last MA half-round is (b, c, 0, b, c, 0), and the dif-
ference before the last key-mixing has the form (f , g, 0, h, i, 0), for f, g, h, i 6= 0.
Therefore, if the input and output differences to 2.5-round MESH-96 are both
as above, the input difference of the middle MA half-round is (d, e, 0, 0, 0,
0) and the corresponding output difference is (f , g, 0, h, i, 0). The difference
before the swap of the four middle words (between rounds) is (f , h, i, g, 0,
0). Notice that the input difference to the MA-box is non-zero, (d, e, 0), while
the output difference of the MA-box is (i, e ⊕ h, d ⊕ f) = (0, 0, g) (from the
xors of the left-hand side, and the xors on the right-hand side, respectively) also
non-zero. But, the last equality indicates that i = 0, which is a contradiction.
Consequently, there are no pairs satisfying both the given input and the output
differences simultaneously. This kind of miss-in-the-middle construction is not
the same one used in the ID attack on IDEA [19].

Table 5.6 lists 2.5-round impossible differentials for MESH-96, starting af-
ter a key-mixing half-round, where a, b, c are non-zero 16-bit xor-difference
words. The impossible differential patterns (marked with †) are useless for
an attack, since no text pair will survive the filtering for the given zero-word
output difference. Some of the remaining patterns will be used in an ID at-
tack on reduced-round MESH-96. Consider the 2.5-round impossible differ-
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ential (a, 0, 0, a, 0, 0)
2.5r

6→ (b, b, c, c, 0, 0), with a, b, c 6= 0, starting after the first
key-mixing half-round, until the end of the third round. The attack proceeds
as follows: let (X(i)

1 , X
(i)
2 , X

(i)
3 , X

(i)
4 , X

(i)
5 , X

(i)
6 ) be the input to the i-th

round, and (Y (i)
1 , Y

(i)
2 , Y

(i)
3 , Y

(i)
4 , Y

(i)
5 , Y

(i)
6 ) be the output after the i-th

key-mixing half-round. Choose a structure of 232 plaintexts with fixed val-
ues for X

(1)
2 , X

(1)
3 , X

(1)
5 , X

(1)
6 , and all possibilities for X

(1)
1 , X

(1)
4 . There are

about 232 · (232 − 1)/2 ≈ 263 text pairs in such a structure with difference
(X(1)′

1 , 0, 0, X
(1)′

4 , 0, 0). Collect about 231 pairs from the structure whose cipher-
text difference satisfies Y

(4)′

5 = Y
(4)′

6 = 0. For each such pair, try all 232 subkeys
(Z(1)

1 , Z
(1)
4 ) to partially encrypt (X(1)

1 , X
(1)∗
1 ) and (X(1)

4 , X
(1)∗
4 ). Collect about

216 32-bit subkeys that satisfy Y
(1)′

1 = Y
(1)′

4 . This step takes about 217 time
and 216 memory. Next, try all 264 subkeys (Z(4)

1 , Z
(4)
2 , Z

(4)
3 , Z

(4)
4 ) that affect

(Y (4)
1 , Y

(4)
2 , Y

(4)
3 , Y

(4)
4 ) and partially decrypt them across the key mixing. Col-

lect about 232 64-bit subkeys satisfying X
(4)′

1 = X
(4)′

2 and X
(4)′

3 = X
(4)′

4 . This
can be done in 218 time and 217 memory. Make a list of all 216 ·232 = 248 96-bit
subkeys combining the two previous steps. These subkeys cannot be the correct
values, because they encrypt a pair of the impossible differential. From the key
schedule of MESH-96:

Z
(4)
1 = (((((Z(2)

7 ¢ Z
(3)
2 )⊕ Z

(3)
4 ) ¢ Z

(3)
6 )⊕ Z

(3)
8 ) ¢ Z

(3)
9 ) ≪ 9⊕ c27 ,

Z
(4)
2 = (((((Z(2)

8 ¢ Z
(3)
3 )⊕ Z

(3)
5 ) ¢ Z

(3)
7 )⊕ Z

(3)
9 ) ¢ Z

(4)
1 ) ≪ 9⊕ c28 ,

Z
(4)
3 = (((((Z(2)

9 ¢ Z
(3)
4 )⊕ Z

(3)
6 ) ¢ Z

(3)
8 )⊕ Z

(4)
1 ) ¢ Z

(4)
2 ) ≪ 9⊕ c29 ,

Z
(4)
4 = (((((Z(3)

1 ¢ Z
(3)
5 )⊕ Z

(3)
7 ) ¢ Z

(3)
9 )⊕ Z

(4)
2 ) ¢ Z

(4)
3 ) ≪ 9⊕ c30 ,

and knowledge of (Z(1)
1 , Z

(1)
4 ) only is not enough to determine Z

(4)
1 , Z

(4)
2 , Z

(4)
3 ,

Z
(4)
4 uniquely. Therefore, no reduction in the effort for the key sieving phase is

achieved in MESH-96 (in comparison to similar attacks on IDEA).
Each text pair defines a list of about 248 wrong 96-bit subkeys. Compute

the union of the lists of wrong subkeys suggested. It is expected that after 224

structures the number of remaining wrong subkeys is:

296 · (1− 248

296
)2

31·224
= 296 · (1− 2−48)2

48·27 ≈ 296 · e−128 ≈ 2−88.66.

Thus the correct subkeys can be uniquely identified. The attack requires 232 ·
224 = 256 chosen plaintexts. The memory complexity is about 256 · (217 +218)+
296/8 ≈ 293 bytes for sieving the correct 96-bit subkeys. The time complexity
is about 255 · (218 + 217) ≈ 273.5 steps. Let a step consist of a modular multipli-
cation; as there are 27 multiplications in 3.5 rounds, the latter corresponds to
273.5/27 ≈ 269 3.5-round MESH-96 computations.

A second 2.5-round impossible differential (0, a, 0, 0, a, 0)
2.5r

6→ (0, 0, b, b, c, c) al-
lows to recover (Z(1)

2 , Z
(1)
5 , Z

(4)
5 , Z

(4)
6 ), since Z

(4)
5 , Z

(4)
6 were already discov-

ered, with 238.5 chosen plaintexts, 261 bytes of memory, and time equivalent to
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238.5(217 + 217) = 256.5 steps or 252 3.5-round computations. Finally, the 2.5-

round impossible differential (0, 0, a, 0, 0, a)
2.5r

6→ (b, b, 0, 0, c, c) can recover (Z(1)
3 ,

Z
(1)
6 ), with 232 chosen plaintexts, 229 bytes of memory and time equivalent to 249

steps, or 245 3.5-round computations. In total, the first 96 user key bits were di-
rectly recovered, and the remaining 96 user key bits can be found by exhaustive
search, which leads to a final time complexity of 296 3.5-round computations.

To attack 4 rounds, the subkeys (Z(4)
7 , Z

(4)
8 , Z

(4)
9 ) of an additional MA half-

round can be guessed, and the previous attack on 3.5 rounds can be performed.
The time complexity increases to 296+48 = 2144 4-round computations.

5.7.3 Impossible Differential Attacks on MESH-128

Similar to MESH-96, there is a larger number of impossible differential pat-
terns for 2.5-round MESH-128. The time-data-memory trade-off ID attack on
MESH-128 that requires the least amount of data uses the 2.5-round differen-

tial pattern (a, b, 0, 0, a, b, 0, 0)
2.5r

6→ (c, c, d, e, d, e, 0, 0), with a, b, c, d, e 6= 0. The
attack proceeds as follows: let X

(j)
i , 1 ≤ i ≤ 8, be the input to the j-th round,

and Y
(j)
i , 1 ≤ i ≤ 8, be the output of the j-th key-mixing layer. Choose a

structure of 264 plaintexts with fixed values for X
(1)
3 , X

(1)
4 , X

(1)
7 , X

(1)
8 , and all

possibilities for X
(1)
1 , X

(1)
2 , X

(1)
5 , X

(1)
6 . There are about 264 · (264− 1)/2 ≈ 2127

text pairs in such a structure with difference (X(1)′

1 , X
(1)′

2 , 0, 0, X
(1)′

5 , X
(1)′

6 , 0,
0). Collect about 295 pairs from the structure whose ciphertext difference satisfy
Y

(4)′

7 = Y
(4)′

8 = 0. For each such pair, try all 264 subkeys (Z(1)
1 , Z

(1)
2 , Z

(1)
5 , Z

(1)
6 )

to partially encrypt (X(1)
i , X

(1)∗
i ), i ∈ {1, 2, 5, 6} across the key mixing. Collect

about 232 64-bit subkeys satisfying Y
(1)′

1 = Y
(1)′

5 and Y
(1)′

2 = Y
(1)′

6 . This step
takes about 218 time and 217 memory.

Next, try all 296 subkeys Z
(4)
i , 1 ≤ i ≤ 6 that affect Y

(4)
i , 1 ≤ i ≤ 6 and

partially decrypt them across the key mixing. Collect about 248 96-bit subkeys
satisfying X

(4)′

1 = X
(4)′

2 , X
(4)′

3 = X
(4)′

5 , and X
(4)′

4 = X
(4)′

6 . This can be done in
3 · 217 time and 3 · 216 memory. Make a list of all 280 160-bit subkeys combining
the two previous steps. These subkeys cannot be the correct values, because
they lead to a pair of the impossible differential. From the key schedule of
MESH-128:

Z
(4)
1 = (((((Z(2)

9 ¢ Z
(2)
12 )⊕ Z

(3)
1 ) ¢ Z

(3)
5 )⊕ Z

(3)
11 ) ¢ Z

(3)
12 ) ≪ 11⊕ c36 ,

Z
(4)
2 = (((((Z(2)

10 ¢ Z
(3)
1 )⊕ Z

(3)
2 ) ¢ Z

(3)
6 )⊕ Z

(3)
12 ) ¢ Z

(4)
1 ) ≪ 11⊕ c37 ,

Z
(4)
3 = (((((Z(2)

11 ¢ Z
(3)
2 )⊕ Z

(3)
3 ) ¢ Z

(3)
7 )⊕ Z

(4)
1 ) ¢ Z

(4)
2 ) ≪ 11⊕ c38 ,

Z
(4)
4 = (((((Z(2)

12 ¢ Z
(3)
3 )⊕ Z

(3)
4 ) ¢ Z

(3)
8 )⊕ Z

(4)
2 ) ¢ Z

(4)
3 ) ≪ 11⊕ c39 ,

Z
(4)
5 = (((((Z(3)

1 ¢ Z
(3)
4 )⊕ Z

(3)
5 ) ¢ Z

(3)
9 )⊕ Z

(4)
3 ) ¢ Z

(4)
4 ) ≪ 11⊕ c40 ,

Z
(4)
6 = (((((Z(3)

2 ¢ Z
(3)
5 )⊕ Z

(3)
6 ) ¢ Z

(3)
10 )⊕ Z

(4)
4 ) ¢ Z

(4)
5 ) ≪ 11⊕ c41 ,
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and knowledge of (Z(1)
1 , Z

(1)
2 , Z

(1)
5 , Z

(1)
6 ) only is not enough to determine Z

(4)
i ,

1 ≤ i ≤ 6 uniquely. Therefore, no reduction in the effort for the key sieving
phase is achieved in MESH-128 (in comparison to ID attacks on IDEA).

Each text pair defines a list of about 280 wrong 160-bit subkeys. Compute
the union of the lists of wrong subkeys suggested. It is expected that after 288

pairs in a single structure the number of remaining wrong subkeys is: 2160 ·
(1 − 280

2160 )2
88 ≈ 2−24.66. Thus the correct subkey can be uniquely identified.

The attack requires 264 chosen plaintexts. The memory complexity is about
288 · (217 + 3 · 216) + 2160/8 ≈ 2157 bytes for sieving the correct subkeys. The
time complexity is about 288 · (218 + 3 · 217) ≈ 2107 steps. If a step consists of
a modular multiplication, and there are 40 multiplications in 3.5 rounds, then
the latter corresponds to 2107/40 ≈ 2102 3.5-round MESH-128 computations.

The 2.5-round impossible differential (0, 0, a, b, 0, 0, a, b)
2.5r

6→ (c, c, 0, d, 0, d, e, e)
allows to recover (Z(1)

3 , Z
(1)
4 , Z

(1)
7 , Z

(1)
8 , Z

(4)
1 , Z

(4)
2 , Z

(4)
4 , Z

(4)
6 , Z

(4)
7 , Z

(4)
8 ), with

the same complexity as the previous attack. The joint attack complexity is 2103

3.5-round MESH-128 computations, 2157 bytes of memory and 265 chosen plain-
texts. In total, the first 128 user key bits were effectively recovered. From the
key schedule, knowledge of Z

(4)
i , 1 ≤ i ≤ 8, do not provide enough information

to deduce the remaining 128 user key bits, which are then recovered by exhaus-
tive search. Therefore, the final time complexity is 2128 3.5-round MESH-128
computations.

An attack on four rounds can guess (Z(4)
9 , Z

(4)
10 , Z

(4)
11 , Z

(4)
12 ) in an additional

MA half-round, and apply the attack on 3.5 rounds. The time complexity
increases to 2128+64 = 2192 4-round computations.

A final comment is that there are other 2.5-round impossible differential

patterns for MESH-128, such as (a, b, 0, 0, a, b, 0, 0)
2.5r

6→ (c, c, 0, 0, 0, 0, 0, 0), that
requires less memory (2110 bytes) than the one used in the previous descrip-
tion, but the former requires more chosen plaintexts (288). The choice of the
impossible differential used was based on the fact that the final complexity is
dominated by the exhaustive key search on half of the key space.

5.8 Slide Attacks

This section describes slide and advanced slide attacks on MESH ciphers.

5.8.1 (Conventional) Slide Attacks

The slide attack was presented by Biryukov and Wagner in [33] as a known-
plaintext (sometimes chosen-plaintext) attack on product ciphers, that exploit
the self-similarity of the cipher round transformation. The self-similarity con-
dition is satisfied if Fi = Fj , for 1 ≤ i, j ≤ r, where Fk is the round function
parameterized by the key k. This implies that the round subkeys are periodic.
This attack is, in many cases, independent of the number of rounds. More for-
mally, let EK be an n-bit block cipher with r rounds, that can be modeled as r
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iterations of a key-dependent round permutation Fi, that is,

EK(P ) = FKr
(FKr−1(. . . (FK1(P )) . . .)),

where Ki is the i-th round subkey and the self-similarity condition is satisfied.
The attack consists in sliding one copy of the encryption scheme against an-
other copy, with the same key, so that the two schemes are, for instance, one
round out of phase. If (P1, C1) and (P2, C2) are two pairs of corresponding
plaintext/ciphertext, and assuming the self-similarity condition holds, then one
can obtain Fk(P1) = P2, and Fk(C1) = C2, called a slid pair. The attacker
obtains 2n/2 pairs (Pi, Ci) of known texts, and looks for a slid pair. Due to the
birthday paradox, it is expected that about one pair of indices (i, j) exist such
that Fk1(Pi) = Pj (and therefore, Fkr (Ci) = Cj , which gives a slid pair). It is
assumed that the round function is weak in the sense that it is computation-
ally efficient to deduce the round subkey k = k1 = kr, given (Pi, Ci), (Pj , Cj),
Fk(Pi) = Pj , and Fk(Ci) = Cj , that is, from a single round. Notice that the at-
tack is independent of the parameter r due to the periodicity of round subkeys.
Slide attacks have been reported on Treyfer [233], on variants of DES [175] and
Blowfish [203], and on the stream cipher WAKE [49].

For MESH ciphers, the distinct key-mixing layers for even and odd rounds
force the basic and the advanced slide attacks to slide encryption schemes by at
least two rounds.9

Theorem 5.1 The slide attack, using encryption schemes slid by two rounds,
does not apply to MESH-64.

Proof. Suppose the slide attack holds for MESH-64. Then, a necessary condition
to be fulfilled is the round self-similarity, that is, all the odd-round subkeys might
be equal:

Z
(1)
i = Z

(3)
i = Z

(5)
i = Z

(7)
i , 1 ≤ i ≤ 7 , (5.20)

as well as all the even-round subkeys:

Z
(2)
i = Z

(4)
i = Z

(6)
i = Z

(8)
i , 1 ≤ i ≤ 7 . (5.21)

These self-similarity conditions imply, for instance, that:

Z
(3)
1 = (((Z(1)

7 ¢ Z
(2)
1 )⊕ Z

(2)
2 ¢ Z

(2)
5 )⊕ Z

(2)
6 ¢ Z

(2)
7 ) ≪ 7⊕ c14 ,

= (((Z(3)
7 ¢ Z

(4)
1 )⊕ Z

(4)
2 ¢ Z

(4)
5 )⊕ Z

(4)
6 ¢ Z

(4)
7 ) ≪ 7⊕ c14 . (5.22)

From the key schedule: Z
(5)
1 = (((Z(3)

7 ¢ Z
(4)
1 )⊕Z

(4)
2 ¢ Z

(4)
5 )⊕ Z

(4)
6 ¢ Z

(4)
7 ) ≪

7 ⊕ c28. Therefore, from (5.20) and (5.21), it follows that: c14 = c28. But,
according to Table 5.2, c14 = 5555x and c28 = eeb6x. This is a contradiction.
The conclusion is that the round subkeys of MESH-64 cannot satisfy the self-
similarity conditions for the 2-round slide attack. ¤

9In retrospect, it was not necessary to have different key-mixing layers for odd and even
rounds in order to avoid slide attack.
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Theorem 5.2 The slide attack, using encryption schemes slid by two rounds,
does not apply to MESH-96.

Proof. Analogous to the proof of Theorem 5.1. ¤

Theorem 5.3 The slide attack, using encryption schemes slid by two rounds,
does not apply to MESH-128.

Proof. Analogous to the proof of Theorem 5.1. ¤
A similar reasoning can be used to demonstrate that the self-similarity con-

dition does not apply for round subkeys with periods 4 or 6 for MESH-64, nor
with periods 4, 6 or 8 for MESH-96, nor with periods 4, 6, 8 or 10 for MESH-128.
Consequently, the slide attack does not apply to the MESH ciphers.

5.8.2 Advanced Slide Attacks

The advanced slide attack (or with a twist) by Biryukov and Wagner [34] com-
pare slid versions of an encryption and a decryption scheme. The self-similarity
conditions are generalized in the sense that the encryption and decryption sub-
keys are assumed to match. Similar to the slide attacks discussed previously,
the advanced slide attack has to be applied for MESH ciphers slid by at least
two rounds, or multiples of two rounds, due to distinct key mixings for even and
odd rounds.

Theorem 5.4 The advanced slide attack, using encryption/decryption schemes
slid by two rounds, does not apply to MESH-64.

Proof. Suppose the advanced slide attack holds for MESH-64. Then, a necessary
condition to be fulfilled is the round self-similarity, that is, all the odd-round
subkeys might be equal:

Z
(1)
i = Z

(3)
i = Z

(5)
i = Z

(7)
i , 1 ≤ i ≤ 7 , (5.23)

as well as all the even-round subkeys:

Z
(2)
i = Z

(4)
i = Z

(6)
i = Z

(8)
i , 1 ≤ i ≤ 7 . (5.24)

Additionally, the 2-round twisted-and-slid schemes imply that

Z
(3)
1 = (Z(9)

1 )−1 , (5.25)

Z
(3)
2 = −Z

(9)
2 , (5.26)

Z
(3)
3 = −Z

(9)
3 , (5.27)

Z
(3)
4 = (Z(9)

4 )−1 , (5.28)

Z
(4)
1 = −Z

(8)
1 , (5.29)

Z
(4)
2 = (Z(8)

3 )−1 , (5.30)

Z
(4)
3 = (Z(8)

2 )−1 , (5.31)

Z
(4)
4 = −Z

(8)
4 . (5.32)



148 CHAPTER 5. DESIGN AND ANALYSIS OF THE MESH CIPHERS

The restrictions (5.26), (5.27), (5.29), (5.32) on additive subkeys imply that
Z

(3)
2 = Z

(9)
2 = Z

(3)
3 = Z

(9)
3 = Z

(4)
1 = Z

(8)
1 = Z

(4)
4 = Z

(8)
4 ∈ {0000x, 8000x}. The

restrictions (5.25), (5.28),(5.30), and (5.31) on the multiplicative subkeys imply
that Z

(3)
1 = Z

(9)
1 = Z

(3)
4 = Z

(9)
4 = Z

(4)
2 = Z

(8)
3 = Z

(4)
3 = Z

(8)
2 ∈ {0, 1}, since

only 0 and 1 are their own multiplicative inverses. These particular values turn
the addition and multiplication into involutions.

The self-similarity conditions (5.23) and (5.24) imply, for instance, that:

Z
(2)
2 = (((Z(1)

1 ¢ Z
(1)
2 )⊕ Z

(1)
3 ¢ Z

(1)
6 )⊕ Z

(1)
7 ¢ Z

(2)
1 ) ≪ 7⊕ c8 ,

= (((Z(3)
1 ¢ Z

(3)
2 )⊕ Z

(3)
3 ¢ Z

(3)
6 )⊕ Z

(3)
7 ¢ Z

(4)
1 ) ≪ 7⊕ c8 . (5.33)

From the key schedule of MESH-64, Z
(4)
2 = (((Z(3)

1 ¢Z
(3)
2 )⊕Z

(3)
3 ¢Z

(3)
6 )⊕Z

(3)
7 ¢

Z
(4)
1 ) ≪ 7 ⊕ c22, and (5.33) implies that c8 = c22. But, from Table 5.2, c8 =

0101x, and c22 = 095cx. This is a contradiction. Therefore, the round subkeys
of MESH-64 cannot satisfy the self-similarity conditions for the advanced slide
attack. ¤

Theorem 5.5 The advanced slide attack, using encryption/decryption schemes
slid by two round, does not apply to MESH-96.

Proof. Analogous to the proof of Theorem 5.4. ¤

Theorem 5.6 The advanced slide attack, using encryption/decryption schemes
slid by two round, does not apply to MESH-128.

Proof. Analogous to the proof of Theorem 5.4. ¤

5.9 Square Attacks

Square attacks were first described by Daemen et al. in [59]. This section de-
scribes Square attacks on all MESH ciphers, following the terminology used in
Chap. 4. The word size is set to 16 bits. The integral operator [125] used for
the sum of 16-bit words in a multiset is bitwise exclusive-or.

5.9.1 Square Attack on MESH-64

A Square attack on 2.5-round MESH-64 can start with input multisets of the
form (A P A P ) or, more specifically, (i¯ z−1

11 , d1, i ¯ z31, d2), where d1, d2 are
16-bit constants, 0 ≤ i ≤ 216 − 1, and (z11, z31) are candidate keys for (Z(1)

1 ,
Z

(1)
3 ). Notice that except for (z11, z31), the same permutation is used in the

two active words in the input multiset. The rationale for combining z−1
11 and

−z31 with the input multiset is to eliminate the influence of (Z(1)
1 , Z

(1)
3 ) before

the MA-box: for the correct (z11, z31) both inputs to the MA-box in the first
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round will be passive, and both inputs to the MA-box in the second round will
be active. The multiset chain across two rounds will have the form

(A P A P ) → (A A P P ) → (? ? ? ?) . (5.34)

Let C = (C(i)
1 , C

(i)
2 , C

(i)
3 , C

(i)
4 ) be the ciphertext multiset values, for 0 ≤ i ≤

216 − 1, after 2.5 rounds. Then, the 64 subkey bits (Z(1)
1 , Z

(1)
3 , Z

(3)
1 , Z

(3)
2 ) can

be recovered by verifying if

(C(i)
1 ¯ z−1

13 )⊕ (C(i)
2 ¯ z23) (5.35)

is an active word, where (z13, z23) is a candidate pair for (Z(3)
1 , Z

(3)
2 ). In this

attack the following subkeys cannot be distinguished: Z
(1)
1 from Z

(1)
1 ¯ 0, Z

(3)
1

from Z
(3)
1 ¯ 0, Z

(1)
3 from Z

(1)
3 ⊕ 8000x, and Z

(3)
2 from Z

(3)
2 ⊕ 8000x. For the

multiplicative subkeys such as Z
(1)
1 , the reason is that both Z

(1)
1 and Z

(1)
1 ¯0 will

result in the same active word, since (Z(1)
1 ¯ 0)−1 ¯Z

(1)
1 ¯ 0 = (Z(1)

1 )−1 ¯Z
(1)
1 ,

that is, 0 ¯ 0−1 = 1 in GF(216 + 1). For the additive subkeys, such as Z
(1)
3 ,

the MSB can be flipped without altering the integral, since the same value,
8000x, is added an even number of times. The attack using the multiset chain
(5.34) requires four multisets to discard false subkey candidates. That means
4 · 232 · 216 = 250 chosen plaintexts. The time complexity is 260 · 216 +244 · 216 +
228 · 216 + 212 · 216 ≈ 276 2.5-round MESH-64 computations. Once (Z(1)

1 , Z
(1)
3 )

are found, the subkeys (Z(3)
3 , Z

(3)
4 ) can be recovered by re-using two of the four

multisets of the previous step, and checking if (C(i)
3 ¯ z33) ⊕ (C(i)

4 ¯ z−1
43 ), for

0 ≤ i ≤ 216 − 1, is an active word. This requires 230 · 216 + 214 · 216 ≈ 246

half-round MESH-64 computations.
The second phase of the attack uses multisets of the form (d1, i ¯ z21, d2,

i ¯ z−1
41 ), where d1, d2 are 16-bit constants, 0 ≤ i ≤ 216 − 1, and (z21, z41)

are candidate subkeys for (Z(1)
2 , Z

(1)
4 ). Since Z

(3)
i , 1 ≤ i ≤ 4 were found in

the previous step, the correct (Z(1)
2 , Z

(1)
4 ) can be discovered by testing if both

inputs to the MA-box of the second round are active, using two multisets or
2 · 232 · 216 = 249 chosen plaintexts, and 230 · 216 + 214 · 216 ≈ 246 half-round
computations. The remaining 64 key bits, Z

(1)
i , 5 ≤ i ≤ 7, and Z

(2)
1 can be found

by exhaustive search. Therefore, the full 128-bit user key can be recovered with
250 + 249 = 250.5 chosen plaintexts and 276 2.5-round MESH-64 computations.

An attack on 3-round MESH-64 can guess the subkeys of the MA-box of the
third round, Z

(3)
5 , Z

(3)
6 , Z

(3)
7 , and apply the attack on 2.5 rounds, resulting in

248+76 = 2124 3-round MESH-64 computations.

5.9.2 Square Attack on MESH-96

A Square attack on 2.5-round MESH-96 can start with input multisets of the
form (A P P A P P ) or, more specifically, (i ¯ z−1

11 , d1, d2, i ¯ z41, d3, d4),
where d1, d2, d3, d4 are 16-bit constants, 0 ≤ i ≤ 216 − 1, and (z11, z41) are
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candidate values for (Z(1)
1 , Z

(1)
4 ). For the correct values of (z11, z41) the three

inputs to the MA-box of the first round will be passive, and the three inputs
to the MA-box of the second round will have the form (A A P ). The multiset
chain for 2.5 rounds will have the form

(A P P A P P ) → (A A P P P P ) → (? ? ? ? ? ?) . (5.36)

The correct subkey pair can be discovered simultaneously with either of three
subkey pairs: (Z(3)

1 , Z
(3)
2 ), (Z(3)

3 , Z
(3)
4 ) or (Z(3)

5 , Z
(3)
6 ). For instance, if C(i) =

(C(i)
1 , C

(i)
2 , C

(i)
3 , C

(i)
4 , C

(i)
5 , C

(i)
6 ) denotes the ciphertext multiset after 2.5

rounds, then the correct 4-tuple (Z(1)
1 , Z

(1)
4 , Z

(3)
1 , Z

(3)
2 ) can be found by check-

ing if (C(i)
1 ¯z−1

13 )⊕(C(i)
2 ¯z23) is active, where (z13, z23) is a candidate value for

(Z(3)
1 , Z

(3)
2 ). Four multisets are required to discard wrong subkey candidates.

This represents 4 · 232 · 216 = 250 chosen plaintexts, and time equivalent to
260 · 216 +244 · 216 +228 · 216 +212 · 216 ≈ 276 2.5-round MESH-96 computations.
Once (Z(1)

1 , Z
(1)
4 ) are found the other two subkey pairs can be recovered using

two of the previous multisets, and time equivalent to 230 · 216 + 214 · 216 ≈ 246

half-round MESH-96 computations.
The second phase of the attack uses multisets of the form (d1, i¯z21, d2, d3,

i¯ z−1
51 , d4), where d1, d2, d3, d4 are 16-bit constants, 0 ≤ i ≤ 216− 1, and (z21,

z51) are candidate values for (Z(1)
2 , Z

(1)
5 ). Since all subkeys of the key-mixing

of the third round were recovered in a previous step, this attack step tests if
(C(i)

1 ¯ (Z(3)
1 )−1) ⊕ (C(i)

2 ¯ Z
(3)
2 ) is active, (C(i)

3 ¯ (Z(3)
3 )−1) ⊕ (C(i)

4 ¯ Z
(3)
4 ) is

passive, and (C(i)
5 ¯ (Z(3)

5 )−1) ⊕ (C(i)
6 ¯ Z

(3)
6 ) is active, which represent a 48-

bit condition. The attack complexity is 230 · 216 = 246 chosen plaintexts and
time equivalent to 230 · 216 + 214 · 216 ≈ 246 2.5-round computations. Finally,
the last phase of the attack uses multisets of the form (d1, d2, i ¯ z−1

31 , d3, d4,
i ¯ z61), where d1, d2, d3, d4 are 16-bit constants, 0 ≤ i ≤ 216 − 1, and (z31,
z61) are candidate values for (Z(1)

3 , Z
(1)
6 ). Similarly, the data requirements are

246 chosen texts and about 246 2.5-round computations. Therefore, the first 96
user key bits have been directly recovered. The remaining 96 user key bits can
be found by exhaustive search, and the total attack complexity is 250 chosen
texts and 296 2.5-round MESH-96 computations.

An attack on 3 rounds can guess the subkeys of the MA-box of the third
round and apply the previous attack on 2.5 rounds. The time complexity in-
creases to 248+96 = 2144 3-round MESH-96 computations.

An attack on 3.5 rounds could guess Z
(4)
i , for 1 ≤ i ≤ 4, and apply the

previous attack on 3 rounds, but the time complexity becomes 2144+64 = 2208,
which is more than an exhaustive key search.

5.9.3 Square Attacks on MESH-128

A Square attack on 2.5-round MESH-128 can start with multisets of the form
(i ¯ z−1

11 , d1, d2, d3, i ¯ z51, d4, d5, d6), where d1, d2, d3, d4, d5, d6 are 16-bit
constants, 0 ≤ i ≤ 216 − 1, and (z11, z51) are candidate values for (Z(1)

1 , Z
(1)
5 ).
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For the correct value of (z11, z51), the four inputs to the MA-box of the first
round will be passive, and the four inputs to the MA-box of the second round
will have the form (A A P P ). The multiset chain for 2.5 rounds will have the
form

(A P P P A P P P ) → (A A P P P P P P ) → (? ? ? ? ? ? ? ?) . (5.37)

The correct subkey pair can be discovered together with either of four subkey
pairs: (Z(3)

1 , Z
(3)
2 ), (Z(3)

3 , Z
(3)
5 ), (Z(3)

4 , Z
(3)
6 ) or (Z(3)

7 , Z
(3)
8 ). For instance,

if C(i) = (C(i)
1 , C

(i)
2 , C

(i)
3 , C

(i)
4 , C

(i)
5 , C

(i)
6 , C

(i)
7 , C

(i)
8 ) denotes the ciphertext

multiset after 2.5-round MESH-96, then the correct 4-tuple (Z(1)
1 , Z

(1)
5 , Z

(3)
1 ,

Z
(3)
2 ) can be found by checking if (C(i)

1 ¯z−1
13 )⊕(C(i)

2 ¯z23) is active, where (z13,
z23) is a candidate value for (Z(3)

1 , Z
(3)
2 ). Four multisets are required to discard

wrong subkey candidates. This means 4 · 232 · 216 = 250 chosen plaintexts, and
time equivalent to 260 · 216 + 244 · 216 + 228 · 212 + 216 · 216 ≈ 276 2.5-round
MESH-128 computations. Once (Z(1)

1 , Z
(1)
5 ) are found, the other three subkey

pairs can be discovered using two of the previous plaintext multisets, and time
equivalent to 230 · 216 + 214 · 216 ≈ 246 half-round MESH-128 computations per
pair.

Another phase of the attack uses multisets of the form (d1, i ¯ z21, d2, d3,
d4, i ¯ z−1

61 , d5, d6), where d1, d2, d3, d4, d5, d6 are 16-bit constants, 0 ≤ i ≤
216 − 1, and (z21, z61) is a candidate value for (Z(1)

2 , Z
(1)
6 ). The correct (z21,

z61) will cause all inputs to the MA-box of the first round to be passive and
the inputs to the MA-box of the second round to have the form (A P A P ).
Since all subkeys of the key-mixing of the third round were recovered in the
previous step, the attack now tests if (C(i)

1 ¯ (Z(3)
1 )−1)⊕ (C(i)

2 ¯ Z
(3)
2 ) is active,

(C(i)
3 ¯ (Z(3)

3 )−1) ⊕ (C(i)
5 ¯ Z

(3)
5 ) is passive, (C(i)

4 ¯ Z
(3)
4 ) ⊕ (C(i)

6 ¯ (Z(3)
6 )−1)

is active and (C(i)
7 ¯ Z

(3)
7 ) ⊕ (C(i)

8 ¯ (Z(3)
8 )−1) is passive, to find (Z(1)

2 , Z
(1)
6 ).

The complexity is 230 · 216 = 246 chosen plaintexts, and time equivalent to
230 · 216 + 214 · 216 ≈ 246 2.5-round computations.

The third phase of the attack uses multisets of the form (d1, d2, i¯z−1
31 , d3, d4,

d5, i¯ z71, d6), where d1, d2, d3, d4, d5, d6 are 16-bit constants, 0 ≤ i ≤ 216−1,
and (z31, z71) is a candidate value for (Z(1)

3 , Z
(1)
7 ). The correct (z31, z71) will

cause all inputs to the MA-box of the first round to be passive and the inputs
to the MA-box of the second round to have the form (P A P A). Similar to the
previous phase the attack tests if (C(i)

1 ¯ (Z(3)
1 )−1) ⊕ (C(i)

2 ¯ Z
(3)
2 ) is passive,

(C(i)
3 ¯ (Z(3)

3 )−1) ⊕ (C(i)
5 ¯ Z

(3)
5 ) is active, (C(i)

4 ¯ Z
(3)
4 ) ⊕ (C(i)

6 ¯ (Z(3)
6 )−1) is

passive and (C(i)
7 ¯Z

(3)
7 )⊕(C(i)

8 ¯(Z(3)
8 )−1) is active. The associated complexity

is 230 ·216 = 246 chosen plaintexts, and time equivalent to 230 ·216+214 ·216 ≈ 246

2.5-round computations. Finally, the last phase of the attack uses multisets of
the form (d1, d2, d3, i ¯ z41, d4, d5, d6, i¯ z−1

81 ), where d1, d2, d3, d4, d5, d6 are
16-bit constants, 0 ≤ i ≤ 216 − 1, and (z41, z81) is a candidate value for (Z(1)

4 ,
Z

(1)
8 ). The correct (z41, z81) will cause all inputs to the MA-box of the first

round to be passive and the inputs to the MA-box of the second round to have



152 CHAPTER 5. DESIGN AND ANALYSIS OF THE MESH CIPHERS

the form (P P A A). Similar to the previous phase, the attack tests if (C(i)
1 ¯

(Z(3)
1 )−1)⊕ (C(i)

2 ¯ Z
(3)
2 ) is passive, (C(i)

3 ¯ (Z(3)
3 )−1)⊕ (C(i)

5 ¯ Z
(3)
5 ) is passive,

(C(i)
4 ¯Z

(3)
4 )⊕ (C(i)

6 ¯ (Z(3)
6 )−1) is active, and (C(i)

7 ¯Z
(3)
7 )⊕ (C(i)

8 ¯ (Z(3)
8 )−1) is

active. The complexity is 230 · 216 = 246 chosen plaintexts, and time equivalent
to 230 · 216 + 214 · 216 ≈ 246 2.5-round computations. Therefore, the first 128
user key bits have been recovered, and the remaining 128 key bits can be found
by exhaustive search. The final data requirement is about 250 chosen texts, and
time equivalent to 2128 2.5-round MESH-128 computations.

An attack on 3 rounds can guess the four subkeys of the MA-box of the
third round and apply the previous attack on 2.5 rounds. The time complexity
increases to 2128+64 = 2192 3-round MESH-128 computations.

Conventional higher-order Square attacks did not provide any improvement
over the 1st-order integrals described above in terms of number of rounds at-
tacked. Nonetheless, Demirci’s attack to be described further, employs another
approach.

5.10 Demirci’s Attack

At the SAC’02 Workshop, Demirci [65] presented an improved Square attack
on IDEA. This chosen-plaintext attack uses multisets as in Square attacks but
the analysis of the integral value is restricted to the least significant bit of a
combination of words, instead of a 16-bit value. Exclusive-or is used as the
integral operator.

5.10.1 Demirci’s Attack on MESH-64

Demirci’s attack using 1st-order integrals [59, 125] can be adapted to MESH-
64 but starting from the second round, or any other even round. Consider, for
instance, a plaintext multiset of the form (P P P A), that is, where the initial
three words are constant (passive) and the fourth word is active. Let (C(i)

1 , C
(i)
2 ,

C
(i)
3 , C

(i)
4 ) denote the ciphertext multiset after i rounds. After 1-round MESH-

64, the output multiset has the form (? ? A ∗), that is, the first two words are
garbled, the third word is active and the fourth word is balanced. The multiset
after 1.5-round becomes (? ? A ?) but the least significant bit of C

(1.5)
2 is constant

because it is a combination of only active words from the MA-box of the first
round. Demirci’s attack exploits the property that the integral, restricted to
the least significant bit, is constant along a path across 1-round MESH-64 that
involves only additions and exclusive-ors. These operations preserve the integral
value of the least significant bit over a multiset, as long as only balanced words
are added. This property is used as a distinguisher to attack 2-round MESH-64
from the second to the third rounds (Fig. 5.4(b)):

lsb1 (C(3)
2 ⊕ C

(3)
3 ⊕ (C(2)

2 ¢ Z
(3)
2 )⊕ (C(2)

3 ¢ Z
(3)
3 )) =

lsb1 (Z(3)
6 ¯ ((C(3)

1 ⊕ C
(3)
2 )¯ Z

(3)
5 ¢ (C(3)

3 ⊕ C
(3)
4 ))) , (5.38)
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Figure 5.4: Demirci’s attack on 2-round MESH-64.

where lsb1 denotes the least significant bit function. Over the given multiset,
the integral of lsb1(C

(3)
2 ⊕C

(3)
3 ⊕ (C(2)

2 ¢ Z
(3)
2 )⊕ (C(2)

3 ¢ Z
(3)
3 )) is zero, because

the subkeys are fixed, and the intermediate values have the least significant bit
balanced. Therefore, (5.38) provides a one-bit condition that can be used to
find (Z(3)

5 , Z
(3)
6 ). The attack requires 32 · 216 = 221 chosen plaintexts, and an

effort of 232 · 216 +231 · 216 + . . . 21 · 216 ≈ 249 half-round computations or about
247 2-round computations. The memory complexity is 216 blocks. An attack on
2.5 rounds can guess (Z(4)

1 , Z
(4)
2 , Z

(4)
3 , Z

(4)
4 ) and apply the previous attack on

2 rounds, at the cost of 247 · 264 = 2111 2.5-round MESH-64 computations.10

Notice that the MA-box of MESH-64 forces the right-hand side of (5.38)
to depend upon both inputs to the MA-box, while in the original attack on
IDEA, it depended only on the leftmost input [65]. This property indicates
that the additional layer in the MA-box of MESH-64 was a sound design, even
though four interleaved multiplication/addition layers in the MA-box would
have avoided the 1st-order Demirci’s attack altogether.

An attack on 3 rounds could guess the subkeys of an additional MA-box,
but would require a time complexity of 2111+48 = 2159, more than an exhaustive
key search.

The 1st-order Demirci’s attack, adapted to MESH-64 does not apply if the
attack starts from an odd round, either for the (P P P A) or for the (P A P P )

10The attack complexities were verified by simulations on 16-bit block version of MESH-64.
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multiset. This is a consequence of the use of odd- and even-round key-mixings
(Fig. 5.4(a)). The multiplication in the two middle words in even rounds de-
stroys the integral property of (5.38) over a multiset.

A notable feature of Demirci’s attack adapted to MESH-64 is that Z
(3)
5 and

Z
(3)
6 are recovered, but not Z

(3)
7 , that is, the former subkeys are in the middle of

the cipher, and not at its ends, as is usual in differential and linear attacks.

5.10.2 Demirci’s Attack on MESH-96

For 2-round MESH-96, starting from the first round, Demirci’s attack can use
1st-order multisets of the form (P P P P P A) with only the 8th input word
active, or (P P A P P P ), with only the 3rd input word active, and the following
distinguisher:

lsb1 (C
(2)
3 ⊕ C

(2)
5 ⊕ (C

(1)
3 � Z

(2)
3 )⊕ (C

(1)
5 � Z

(2)
5 )) =

lsb1 ((Z
(2)
7 ¯ (C

(2)
1 ⊕ C

(2)
2 )� (C

(2)
3 ⊕ C

(2)
4 ))¯ (Z

(2)
8 �

(C
(2)
1 ⊕ C

(2)
2 )¯ Z

(2)
7 � (C

(2)
3 ⊕ C

(2)
4 )¯ (C

(2)
5 ⊕ C

(2)
6 ))) , (5.39)

where (C(i)
1 , C

(i)
2 , C

(i)
3 , C

(i)
4 , C

(i)
5 , C

(i)
6 ) is the ciphertext multiset after i rounds

(Fig. 5.5). Over any of the given multisets, the integral of lsb1(C
(2)
3 ⊕ C

(2)
5 ⊕

(C(1)
3 ¢ Z

(2)
3 ) ⊕ (C(1)

5 ¢ Z
(2)
5 )) sums to zero because the subkeys are fixed and

the intermediate least significant bit values are balanced (in a path across a
half-round MESH-96 involving only additions and xors).

Equation (5.39) provides a one-bit condition, and allows to recover (Z(2)
7 ,

Z
(2)
8 ) using 32 ·216 = 221 chosen plaintexts, and time about 247 2-round MESH-

96 computations (similar to the attack on MESH-64). An attack on 2.5 rounds
can guess Z

(3)
i , 1 ≤ i ≤ 6 and apply the attack on 2 rounds, leading to 247 ·296 =

2143 2.5-round MESH-96 computations. An attack on 3 rounds could guess Z
(3)
7 ,

Z
(3)
8 , Z

(3)
9 , and apply the previous attack on 2.5 rounds, but the complexity,

2143+48 = 2191, is similar to the average effort of an exhaustive key search.
Demirci’s attack on reduced-round MESH-96 is based on the fact that 1st-

order multisets can propagate across one MA-box and still preserve the integral
of the least significant bits of some output words constant. These words were
carefully chosen in a path across a half-round MESH-96 that involves only ad-
dition and exclusive-or operations (Fig. 5.5).

Notice that Demirci’s attack on 2-round MESH-96 using (5.39) recovers
(Z(2)

7 , Z
(2)
8 ) but not Z

(2)
9 , that is, the distinguisher is independent of Z

(2)
9 .

Notice also that, according to the key schedule, knowledge of (Z(2)
7 , Z

(2)
8 ) do

not provide information on the user key words.11

5.10.3 Demirci’s Attack on MESH-128

Demirci’s attack using 1st-order integrals do not apply to MESH-128 because the
four interleaved layers in the MA-box do not allow any output word to be bal-

11This attack was verified by simulations in MESH-96(24).
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Figure 5.5: 1st-order Demirci’s attack on 2-round MESH-96.

anced after one round, not even their least significant bits, which is a necessary
condition for the attack. This contrasts to the attacks on MESH-64 and MESH-
96 whose MA-boxes have three interleaved layers of multiplication/addition.

Nonetheless, there are alternative attacks on MESH-128 using higher-order
integrals [65, 125] that can cross the 4-layer MA-box. A 2nd-order Demirci’s
attack on 2-round MESH-128 can use, for instance, multisets in which the first
and fourth input words are jointly active, and all the other six words are passive.
Such multisets contain 232 chosen plaintexts. The multiset after 1.5 rounds
contains only balanced words. In particular, the integral of the inputs to the
MA-box of the second round all sum to zero.

Some terminology for the attack description follows: let (C(i)
1 , C

(i)
2 , C

(i)
3 ,

C
(i)
4 , C

(i)
5 , C

(i)
6 , C

(i)
7 , C

(i)
8 ) denote the ciphertext multiset after i rounds, and

p = C
(2)
1 ⊕ C

(2)
2 , q = C

(2)
3 ⊕ C

(2)
5 , r = C

(2)
4 ⊕ C

(2)
6 , and s = C

(2)
7 ⊕ C

(2)
8 . The

distinguisher for the higher-order Demirci’s attack is obtained by exploring the
least significant bit of the leftmost two output words of the MA-box of the
second round (Fig. 5.6):
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lsb1 (C(2)
4 ⊕ C

(2)
7 ⊕ C

(1)
4 ¯ Z

(2)
4 ⊕ C

(1)
7 ¯ Z

(2)
7 ) =

lsb1 (Z(2)
11 ¯ (p¯ Z

(2)
9 ¢ (p¯ Z

(2)
9 ¢ q)¯

(r ¯ (p¯ Z
(2)
9 ¢ q) ¢ (r ¯ (p¯ Z

(2)
9 ¢ q) ¢ s)¯ Z

(2)
10 ))). (5.40)

Over the given plaintext multiset, the integral of lsb1(C
(2)
4 ⊕ C

(2)
7 ⊕ C

(1)
4 ¯

Z
(2)
4 ⊕C

(1)
7 ¯Z

(2)
7 ) is zero, because the subkeys are fixed, and the corresponding

intermediate values are balanced. Therefore, (5.40) provides a one-bit condition
to recover Z

(2)
9 , Z

(2)
10 and Z

(2)
11 . The data requirements are 48 ·232 = 237.6 chosen

plaintexts, and time equivalent to 248 ·232+247 ·232+. . . 2·232 = 232 ·2·(248−1) ≈
281 half-round computations, or about 279 2-round computations.
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Figure 5.6: 2nd-order Demirci’s attack on 2-round MESH-128.

If the 2-round attack had started from the second round, then an attack
on 2.5 rounds could guess the subkeys Z

(1)
i , 9 ≤ i ≤ 12, of the first MA-box,



5.11. DAEMEN’S LINEAR ATTACK 157

and apply the previous 2-round attack, leading to 279+64 = 2143 2.5-round
computations. An attack on 3 rounds could guess the subkeys Z

(4)
i , 1 ≤ i ≤

8 and apply the previous attack on 2.5 rounds, but the complexity becomes
2143+128, more than an exhaustive key search.

A last observation is that, according to the key schedule of MESH-128,
knowledge of (Z(2)

9 , Z
(2)
10 , Z

(2)
11 ) do not provide information about the user-key

words.

5.11 Daemen’s Linear Attack

In [58], Daemen et al. described a linear attack on IDEA, under weak-key as-
sumptions, that is, assuming some multiplicative subkeys have value 0 or 1,
in order for linear approximations to hold across the multiplication operation
with probability one. In this section, the same approach is used for the MESH
ciphers.

5.11.1 Linear Analysis of MESH-64

For MESH-64, an example of a linear relation under weak-key assumption is the
first entry in Table 5.7. According to the key schedule algorithm of MESH-64,
the user words are xored to fixed constants ci, 0 ≤ i ≤ 7, and are used as
the first eight subkey words. It means that the subkey restrictions Z

(1)
4 , Z

(1)
6 ,

Z
(1)
7 ∈ {0, 1} can be satisfied if the most significant 15 bits of these subkeys

match the corresponding bits of the associated constants.
This linear analysis approach first derives a list of one-round linear relations

with restrictions on some subkeys, shown in Tables 5.7 and 5.8, where α(r) and
α(r+1) are input and output bit masks for one-round MESH-64.

Multiple-round linear relations are obtained by concatenating one-round lin-
ear relations, and deriving the corresponding fraction of keys from the key space
from which the relation holds. This fraction of keys can be derived from the
restrictions on subkeys in the one-round linear relations. Nonetheless, the key
schedule of MESH-64 does not have a simple mapping of subkey bits to user key
bits such as in IDEA. The fraction of keys for the linear relations in MESH-64
was estimated from the weak-key class sizes obtained by exhaustive key search
in a mini-version MESH-64 with12 16-bit blocks, denoted MESH-64(16), where
the key size is 32 bits. Analysis of MESH-64(16) indicated that each subkey
restriction (most significant three bits equal to zero) is satisfied for a fraction of
2−3 or less of the key space. This consistent behavior allowed to estimate the
fraction of subkeys (and the weak-key class size) that satisfy a linear relation
for MESH-64 as 2−15 per subkey.

From Tables 5.7 and 5.8, the longest linear relations (starting from the first
round) are the following:

12With left circular shift by 3 bits in the key schedule.
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Table 5.7: One-round linear relations for MESH-64 for odd rounds.

Linear Relation Odd-Round Subkeys
α(r) 1r→ α(r+1) Z

(r)
1 Z

(r)
4 Z

(r)
5 Z

(r)
6 Z

(r)
7

(0, 0, 0, 1) 1r→ (0, 0, 1, 0) – {0,1} – {0,1} {0,1}
(0, 0, 1, 0) 1r→ (1, 0, 0, 0) – – {0,1} – {0,1}
(0, 0, 1, 1) 1r→ (1, 0, 1, 0) – {0,1} {0,1} {0,1} –
(0, 1, 0, 0) 1r→ (0, 0, 0, 1) – – – {0,1} {0,1}
(0, 1, 0, 1) 1r→ (0, 0, 1, 1) – {0,1} – – –
(0, 1, 1, 0) 1r→ (1, 0, 0, 1) – – {0,1} {0,1} –
(0, 1, 1, 1) 1r→ (1, 0, 1, 1) – {0,1} {0,1} – {0,1}
(1, 0, 0, 0) 1r→ (0, 1, 0, 0) {0,1} – {0,1} – {0,1}
(1, 0, 0, 1) 1r→ (0, 1, 1, 0) {0,1} {0,1} {0,1} {0,1} –
(1, 0, 1, 0) 1r→ (1, 1, 0, 0) {0,1} – – – –
(1, 0, 1, 1) 1r→ (1, 1, 1, 0) {0,1} {0,1} – {0,1} {0,1}
(1, 1, 0, 0) 1r→ (0, 1, 0, 1) {0,1} – {0,1} {0,1} –
(1, 1, 0, 1) 1r→ (0, 1, 1, 1) {0,1} {0,1} {0,1} – {0,1}
(1, 1, 1, 0) 1r→ (1, 1, 0, 1) {0,1} – – {0,1} {0,1}
(1, 1, 1, 1) 1r→ (1, 1, 1, 1) {0,1} {0,1} – – –

(a) (0, 1, 0, 1) 1r→ (0, 0, 1, 1) 1r→ (1, 0, 1, 0) 1r→ (1, 1, 0, 0) 1r→ (0, 1, 0, 1) 1r→ (0, 0, 1, 1),
provided Z

(1)
4 , Z

(2)
3 , Z

(2)
5 , Z

(2)
6 , Z

(3)
1 , Z

(4)
2 , Z

(4)
5 , Z

(4)
6 , Z

(5)
4 ∈ {0, 1}. For

MESH-64(16) this relation holds for a weak-key class of size 4, which cor-
responds to a fraction of 4 · 2−32 = 2−28 of its key space. This fraction is
less than 2−3∗9 = 2−27, that is to be expected if each subkey restriction
held independently. For MESH-64, the weak-key class size is estimated as
2128−15∗8 = 28 for 4 rounds at most;

(b) (1, 0, 1, 0) 1r→ (1, 1, 0, 0) 1r→ (0, 1, 0, 1) 1r→ (0, 0, 1, 1) 1r→ (1, 0, 1, 0) 1r→ (1, 1, 0, 0),
provided Z

(1)
1 , Z

(2)
2 , Z

(2)
5 , Z

(2)
6 , Z

(3)
4 , Z

(4)
4 , Z

(4)
5 , Z

(4)
6 , Z

(5)
1 ∈ {0, 1}. For

MESH-64(16) this relation holds for a weak-key class of size 5, which
is a fraction of 5 · 2−32 ≈ 2−30 of its key space. This fraction is less
than 2−3∗9 = 2−27, that is to be expected if each subkey restriction held
independently. For MESH-64, the weak-key class size is estimated as
2128−15∗8 = 28 for 4 rounds at most.

Relations (a) and (b) can distinguish the first four rounds of MESH-64 from a
random permutation, under weak-key assumptions, or can be used in a 0.5R
attack on 4.5-round MESH-64 to recover at least one of the subkeys Z

(5)
i , 1 ≤

i ≤ 4, using N ≈ 8 · (2−1)−2 = 32 known plaintexts, and about 32 · 216 = 221
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Table 5.8: One-round linear relations for MESH-64 for even rounds.

Linear Relation Even-Round Subkeys
α(r) 1r→ α(r+1) Z

(r)
2 Z

(r)
3 Z

(r)
5 Z

(r)
6 Z

(r)
7

(0, 0, 0, 1) 1r→ (0, 0, 1, 0) – – – {0,1} {0,1}
(0, 0, 1, 0) 1r→ (1, 0, 0, 0) – {0,1} {0,1} – {0,1}
(0, 0, 1, 1) 1r→ (1, 0, 1, 0) – {0,1} {0,1} {0,1} –
(0, 1, 0, 0) 1r→ (0, 0, 0, 1) {0,1} – – {0,1} {0,1}
(0, 1, 0, 1) 1r→ (0, 0, 1, 1) {0,1} – – – –
(0, 1, 1, 0) 1r→ (1, 0, 0, 1) {0,1} {0,1} {0,1} {0,1} –
(0, 1, 1, 1) 1r→ (1, 0, 1, 1) {0,1} {0,1} {0,1} – {0,1}
(1, 0, 0, 0) 1r→ (0, 1, 0, 0) – – {0,1} – {0,1}
(1, 0, 0, 1) 1r→ (0, 1, 1, 0) – – {0,1} {0,1} –
(1, 0, 1, 0) 1r→ (1, 1, 0, 0) – {0,1} – – –
(1, 0, 1, 1) 1r→ (1, 1, 1, 0) – {0,1} – {0,1} {0,1}
(1, 1, 0, 0) 1r→ (0, 1, 0, 1) {0,1} – {0,1} {0,1} –
(1, 1, 0, 1) 1r→ (0, 1, 1, 1) {0,1} – {0,1} – {0,1}
(1, 1, 1, 0) 1r→ (1, 1, 0, 1) {0,1} {0,1} – {0,1} {0,1}
(1, 1, 1, 1) 1r→ (1, 1, 1, 1) {0,1} {0,1} – – –

parity computations.
Linear attacks can also start from an even round, with a different key-mixing

layer. Estimates for MESH-64 were also derived by exhaustive key search in
MESH-64(16). From Table 5.7 and Table 5.8, the longest linear relations found
(starting from the second round) for MESH-64 are the following:

(c) (0, 0, 0, 1) 1r→ (0, 0, 1, 0) 1r→ (1, 0, 0, 0) 1r→ (0, 1, 0, 0) 1r→ (0, 0, 0, 1), provided
Z

(2)
6 , Z

(2)
7 , Z

(3)
5 , Z

(3)
7 , Z

(4)
5 , Z

(4)
7 , Z

(5)
6 , Z

(5)
7 ∈ {0, 1}. For MESH-64(16)

the weak-key class size is 31, which is a fraction of 31 · 2−32 ≈ 2−27 of its
key space. This fraction is smaller than the 23∗8 = 2−24 that would be
expected if each subkeys restriction held independently. For MESH-64,
the weak-key class size is estimated to be less than 2128−15∗8 = 28;

(d) (0, 0, 1, 1) 1r→ (1, 0, 1, 0) 1r→ (1, 1, 0, 0) 1r→ (0, 1, 0, 1) 1r→ (0, 0, 1, 1), provided
Z

(2)
3 , Z

(2)
5 , Z

(2)
6 , Z

(3)
1 , Z

(4)
2 , Z

(4)
5 , Z

(4)
6 , Z

(5)
4 ∈ {0, 1}. For MESH-64(16)

the weak-key class size is 94, that is a fraction of 94 · 2−32 ≈ 2−25.44 of its
key space. For MESH-64, the weak-key class size is estimated to be less
than 2128−15∗8 = 28;

(e) (1, 0, 0, 0) 1r→ (0, 1, 0, 0) 1r→ (0, 0, 0, 1) 1r→ (0, 0, 1, 0) 1r→ (1, 0, 0, 0), provided
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Z
(2)
5 , Z

(2)
7 , Z

(3)
6 , Z

(3)
7 , Z

(4)
6 , Z

(4)
7 , Z

(5)
5 , Z

(5)
7 ∈ {0, 1}. For MESH-64(16)

the weak-key class size is 115, that is a fraction of 115 · 2−32 ≈ 2−25.15 of
its key space. For MESH-64, the weak-key class size is estimated to be
less than 2128−15∗8 ≈ 28;

(f) (1, 0, 0, 1) 1r→ (0, 1, 1, 0) 1r→ (1, 0, 0, 1) 1r→ (0, 1, 1, 0) 1r→ (1, 0, 0, 1), provided
Z

(2)
5 , Z

(2)
6 , Z

(3)
5 , Z

(3)
6 , Z

(4)
5 , Z

(4)
6 , Z

(5)
5 , Z

(5)
6 ∈ {0, 1}. For MESH-64(16)

the weak-key class size is 29, that is a fraction of 29 · 2−32 ≈ 2−27 of its
key space. For MESH-64, the weak-key class size is estimated to be less
than 2128−15∗8 = 28;

(g) (1, 0, 1, 0) 1r→ (1, 1, 0, 0) 1r→ (0, 1, 0, 1) 1r→ (0, 0, 1, 1) 1r→ (1, 0, 1, 0), provided
Z

(2)
3 , Z

(3)
1 , Z

(3)
5 , Z

(3)
6 , Z

(4)
2 , Z

(5)
4 , Z

(5)
5 , Z

(5)
6 ∈ {0, 1}. For MESH-64(16)

the weak-key class size is 2, that is a fraction of 2−31 of its key space. For
MESH-64, the weak-key class size is estimated to be less than 2128−15∗8 =
28;

(h) (1, 1, 0, 0) 1r→ (0, 1, 0, 1) 1r→ (0, 0, 1, 1) 1r→ (1, 0, 1, 0) 1r→ (1, 1, 0, 0), provided
Z

(2)
2 , Z

(2)
5 , Z

(2)
6 , Z

(3)
4 , Z

(4)
3 , Z

(4)
5 , Z

(4)
6 , Z

(5)
1 ∈ {0, 1}. For MESH-64(16)

the weak-key class size is 5, that is a fraction of about 2−30 of its key
space. For MESH-64, the weak-key class size is estimated to be less than
2128−15∗8 = 28;

(i) (1, 1, 1, 1) 1r→ (1, 1, 1, 1) 1r→ (1, 1, 1, 1) 1r→ (1, 1, 1, 1) 1r→ (1, 1, 1, 1), provided
Z

(2)
2 , Z

(2)
3 , Z

(3)
1 , Z

(3)
4 , Z

(4)
2 , Z

(4)
3 , Z

(5)
1 , Z

(5)
4 ∈ {0, 1}. For MESH-64(16)

the weak-key class size is 11, that is a fraction of about 2−28.54 of its key
space. For MESH-64, the weak-key class size is estimated to be less than
2128−15∗8 = 28.

Relations (c)–(i) can distinguish 4-round MESH-64 from a random permutation,
under weak-key assumptions. Alternatively, they can be used in a 0.5R attack
on 4.5-round MESH-64 to recover some of the subkeys Z

(6)
i , 1 ≤ i ≤ 4, with

N ≈ 8 · (2−1)−2 = 32 known plaintexts.

5.11.2 Linear Analysis of MESH-96

The linear analysis of MESH-96 follows the same procedure as for MESH-64.
Initially, one-round linear relations are obtained assuming the subkeys are in-
dependent. Table 5.9 lists one-round linear relations with restrictions for the
odd rounds, and Table 5.10 for the even rounds. These one-round relations are
based on two linear relations for the MA-box of MESH-96: (0, 0, 0) → (0, 0, 0)
and (1, 0, 0) → (0, 1, 0), which are the only ones that preserve the linear approx-
imations restricted to the least significant bit in a word. This is a consequence
of the structure of the MA-box of MESH-96, that contains multiplications that
do not involve subkeys directly. This situation contrasts with the MA-boxes
of MESH-64 and IDEA in which one of the operands of ¯ is always a subkey.
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Due to this MA-box property, not all one-round relations can be concatenated
to multiple rounds, because there may not exist compatible input bit-masks to
link to an output bit-mask.

Table 5.9: One-round linear relations for MESH-96 for odd rounds.

Linear Relation Odd-Round Subkeys
α(r) 1r→ α(r+1) Z

(r)
1 Z

(r)
3 Z

(r)
5 Z

(r)
7 Z

(r)
9

(1, 0, 0, 1, 0, 0) 1r→ (1, 1, 0, 0, 0, 0) {0,1} – – – –
(0, 1, 0, 0, 1, 0) 1r→ (0, 0, 1, 1, 0, 0) – – {0,1} – –
(0, 0, 1, 0, 0, 1) 1r→ (0, 0, 0, 0, 1, 1) – {0,1} – – –
(1, 1, 0, 1, 1, 0) 1r→ (1, 1, 1, 1, 0, 0) {0,1} – {0,1} – –
(1, 0, 1, 1, 0, 1) 1r→ (1, 1, 0, 0, 1, 1) {0,1} {0,1} – – –
(0, 1, 1, 0, 1, 1) 1r→ (0, 0, 1, 1, 1, 1) – {0,1} {0,1} – –
(1, 1, 1, 1, 1, 1) 1r→ (1, 1, 1, 1, 1, 1) {0,1} {0,1} {0,1} – –
(1, 0, 0, 1, 1, 0) 1r→ (0, 0, 1, 0, 0, 0) {0,1} – {0,1} {0,1} {0,1}
(0, 0, 0, 0, 1, 0) 1r→ (1, 1, 1, 0, 0, 0) – – {0,1} {0,1} {0,1}
(1, 1, 0, 1, 0, 0) 1r→ (0, 0, 0, 1, 0, 0) {0,1} – – {0,1} {0,1}
(0, 1, 0, 0, 0, 0) 1r→ (1, 1, 0, 1, 0, 0) – – – {0,1} {0,1}
(1, 1, 1, 1, 0, 1) 1r→ (0, 0, 0, 1, 1, 1) {0,1} {0,1} – {0,1} {0,1}
(1, 0, 1, 1, 1, 1) 1r→ (0, 0, 1, 0, 1, 1) {0,1} {0,1} {0,1} {0,1} {0,1}
(0, 1, 1, 0, 0, 1) 1r→ (1, 1, 0, 1, 1, 1) – {0,1} – {0,1} {0,1}
(0, 0, 1, 0, 1, 1) 1r→ (1, 1, 1, 0, 1, 1) – {0,1} {0,1} {0,1} {0,1}

Similar to MESH-64, the weak-key class sizes for MESH-96 were derived from
exhaustive key search on mini MESH-96 with 24-bit blocks, denoted MESH-
96(24), where the key size is 48 bits. Each subkey restriction (most significant
three bits equal to zero) holds roughly for a fraction of 2−3 of the key space.
Estimates are conservative, and it can be expected that the weak-key class sizes
be smaller for MESH-96.

From Tables 5.9 and 5.10, the longest linear relations (starting from the first
round) are the following:

(a) (0, 1, 0, 0, 0, 0) 1r→ (1, 1, 0, 1, 0, 0) 1r→ (0, 0, 0, 1, 0, 0) 0.5r→ (0, 0, 0, 1, 0, 0), pro-
vided Z

(1)
7 , Z

(1)
9 , Z

(2)
2 , Z

(2)
4 , Z

(2)
7 , Z

(2)
9 ∈ {0, 1}. For MESH-96(24) the

weak-key class size is about 228.15, that corresponds to a fraction of about
228.15−48 ≈ 2−19.84 of its key space. This fraction is less than 2−3∗6 = 2−18

that would be expected if each subkey restriction held independently. For
MESH-96, the weak-key class size is estimated as 2192−15∗6 ≈ 2102;

(b) (1, 0, 1, 1, 1, 1) 1r→ (0, 0, 1, 0, 1, 1) 1r→ (1, 1, 1, 0, 1, 1) 0.5r→ (1, 1, 1, 0, 1, 1), pro-
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Table 5.10: One-round linear relations for MESH-96 for even rounds.

Linear Relation Even-Round Subkeys
α(r) 1r→ α(r+1) Z

(r)
2 Z

(r)
4 Z

(r)
6 Z

(r)
7 Z

(r)
9

(1, 0, 0, 1, 0, 0) 1r→ (1, 1, 0, 0, 0, 0) – {0,1} – – –
(0, 1, 0, 0, 1, 0) 1r→ (0, 0, 1, 1, 0, 0) {0,1} – – – –
(0, 0, 1, 0, 0, 1) 1r→ (0, 0, 0, 0, 1, 1) – – {0,1} – –
(1, 1, 0, 1, 1, 0) 1r→ (1, 1, 1, 1, 0, 0) {0,1} {0,1} – – –
(1, 0, 1, 1, 0, 1) 1r→ (1, 1, 0, 0, 1, 1) – {0,1} {0,1} – –
(0, 1, 1, 0, 1, 1) 1r→ (0, 0, 1, 1, 1, 1) {0,1} – {0,1} – –
(1, 1, 1, 1, 1, 1) 1r→ (1, 1, 1, 1, 1, 1) {0,1} {0,1} {0,1} – –
(1, 0, 0, 1, 1, 0) 1r→ (0, 0, 1, 0, 0, 0) – {0,1} – {0,1} {0,1}
(0, 0, 0, 0, 1, 0) 1r→ (1, 1, 1, 0, 0, 0) – – – {0,1} {0,1}
(1, 1, 0, 1, 0, 0) 1r→ (0, 0, 0, 1, 0, 0) {0,1} {0,1} – {0,1} {0,1}
(0, 1, 0, 0, 0, 0) 1r→ (1, 1, 0, 1, 0, 0) {0,1} – – {0,1} {0,1}
(1, 1, 1, 1, 0, 1) 1r→ (0, 0, 0, 1, 1, 1) {0,1} {0,1} {0,1} {0,1} {0,1}
(1, 0, 1, 1, 1, 1) 1r→ (0, 0, 1, 0, 1, 1) – {0,1} {0,1} {0,1} {0,1}
(0, 1, 1, 0, 0, 1) 1r→ (1, 1, 0, 1, 1, 1) {0,1} – {0,1} {0,1} {0,1}
(0, 0, 1, 0, 1, 1) 1r→ (1, 1, 1, 0, 1, 1) – – {0,1} {0,1} {0,1}

vided Z
(1)
1 , Z

(1)
3 , Z

(1)
5 , Z

(1)
7 , Z

(1)
9 , Z

(2)
6 , Z

(2)
7 , Z

(2)
9 , Z

(3)
1 , Z

(3)
3 , Z

(3)
5 ∈ {0, 1}.

For MESH-96(24) the weak-key class size is about 214.93, that corresponds
to a fraction of 214.93−48 ≈ 2−33.07 of its key space. This fraction is less
than 2−3∗11 = 2−33 that would be expected if each subkey restriction
held independently. For MESH-96, the weak-key class size is estimated as
2192−15∗11 ≈ 227;

(c) (1, 1, 1, 1, 1, 1) 1r→ (1, 1, 1, 1, 1, 1) 1r→ (1, 1, 1, 1, 1, 1) 1r→ (1, 1, 1, 1, 1, 1) 0.5r→
(1, 1, 1, 1, 1, 1), provided Z

(1)
1 , Z

(1)
3 , Z

(1)
5 , Z

(2)
2 , Z

(2)
4 , Z

(2)
6 , Z

(3)
1 , Z

(3)
3 , Z

(3)
5 ,

Z
(4)
2 , Z

(4)
4 , Z

(4)
6 ∈ {0, 1}. For MESH-96(24) the weak-key class size is 620,

that corresponds to a fraction of 29.27−48 ≈ 2−38.72 of its key space. This
fraction is less than 2−3∗12 = 2−36 that would be expected if each subkey
restriction held independently. For MESH-96, the weak-key class size is
estimated as 2192−15∗12 ≈ 212.

Relations (a) and (b) can distinguish the first 2.5-round MESH-96 from a ran-
dom permutation, or can be used in a 0.5R attack on 3-round MESH-96 to
recover subkeys Z

(3)
7 , Z

(3)
8 , Z

(3)
9 , with N ≈ 8 · (2−1)−2 = 32 chosen plaintexts

and 32 · 248 = 253 parity computations. Relation (c) can distinguish 3.5-round
MESH-96 from a random permutation, or can be used in a 0.5R attack on 4-
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round MESH-96 to recover subkeys Z
(4)
7 , Z

(4)
8 , Z

(4)
9 , with the same effort as

the attack on 3 rounds. Attacking 4.5 rounds requires guessing six subkeys
of the fifth key-mixing layer, leading to a complexity of 296+53 = 2149 parity
computations.

Linear relations can also be derived starting from an even round, because the
asymmetric key-mixing layers may impose different subkey restrictions. Similar
estimates are assumed for the weak-key classes, as in the case of linear relations
starting from the first round.

From Tables 5.9 and 5.10, the longest linear relations found (starting from
the second round) are the following:

(d) (0, 1, 0, 0, 0, 0) 1r→ (1, 1, 0, 1, 0, 0) 1r→ (0, 0, 0, 1, 0, 0) 0.5r→ (0, 0, 0, 1, 0, 0), pro-
vided Z

(2)
2 , Z

(2)
7 , Z

(2)
9 , Z

(3)
1 , Z

(3)
7 , Z

(3)
9 ∈ {0, 1}, which imply a weak-key

class of estimated size 2192−15∗7 = 287;

(e) (1, 0, 1, 1, 1, 1) 1r→ (0, 0, 1, 0, 1, 1) 1r→ (1, 1, 1, 0, 1, 1) 0.5r→ (1, 1, 1, 0, 1, 1), pro-
vided Z

(2)
4 , Z

(2)
6 , Z

(2)
7 , Z

(2)
9 , Z

(3)
3 , Z

(3)
5 , Z

(3)
7 , Z

(3)
9 , Z

(4)
2 , Z

(4)
6 ∈ {0, 1},

which imply a weak-key class of estimated size 2192−15∗10 = 242;

(f) (1, 1, 1, 1, 1, 1) 1r→ (1, 1, 1, 1, 1, 1) 1r→ (1, 1, 1, 1, 1, 1) 1r→ (1, 1, 1, 1, 1, 1) 0.5r→
(1, 1, 1, 1, 1, 1), provided Z

(2)
2 , Z

(2)
4 , Z

(2)
6 , Z

(3)
1 , Z

(3)
3 , Z

(3)
5 , Z

(4)
2 , Z

(4)
4 , Z

(4)
6 ,

Z
(5)
1 , Z

(5)
3 , Z

(5)
5 ∈ {0, 1}, which imply a weak-key class of estimated size

2192−15∗12 = 212.

Relations (d) and (e) can distinguish 2.5-round MESH-96 (starting from the
second round) from a random permutation, or can be used in a 0.5R attack on
3-round MESH-96, to recover Z

(4)
7 , Z

(4)
8 , Z

(4)
9 , with about N ≈ 8 · (2−1)−2 = 32

known plaintexts, and about 32 · 248 = 253 parity computations. Relation (f)
can distinguish 3.5-round MESH-96 from a random permutation, or can be used
in a 0.5R attack on 4-round MESH-96, to recover Z

(5)
7 , Z

(5)
8 , Z

(5)
9 with the same

complexities as the attack on 3 rounds.

5.11.3 Linear Analysis of MESH-128

For MESH-128, Tables 5.11 and 5.12 list the possible one-round linear relations
with restrictions on multiplicative subkeys. These one-round linear relations are
based on the linear relation (0, 0, 0, 0) → (0, 0, 0, 0) across the MA-box of MESH-
128, which is the only relation that preserves the word-wise approximations
in the least significant bit with non-zero bias. This is a consequence of the
MA-box structure of MESH-128, which similarly to that of MESH-96, contains
multiplications which do not involve subkey words directly, as an operand.

Similar to the linear analysis of MESH-96, multiple-round linear relations
are obtained by concatenating one-round linear relations, whenever possible,
and deriving the corresponding fraction of keys from the key space for which
the relations hold.
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Table 5.11: One-round linear relations for MESH-128 for odd rounds.

Linear Relation Odd-Round Subkeys
α(r) 1r→ α(r+1) Z

(r)
1 Z

(r)
3 Z

(r)
6 Z

(r)
8

(1, 0, 0, 0, 1, 0, 0, 0) 1r→ (1, 1, 0, 0, 0, 0, 0, 0) {0,1} – – –
(0, 1, 0, 0, 0, 1, 0, 0) 1r→ (0, 0, 1, 0, 1, 0, 0, 0) – – {0,1} –
(0, 0, 1, 0, 0, 0, 1, 0) 1r→ (0, 0, 0, 1, 0, 1, 0, 0) – {0,1} – –
(0, 0, 0, 1, 0, 0, 0, 1) 1r→ (0, 0, 0, 0, 0, 0, 1, 1) – – – {0,1}
(1, 1, 0, 0, 1, 1, 0, 0) 1r→ (1, 1, 1, 0, 1, 0, 0, 0) {0,1} – {0,1} –
(1, 0, 1, 0, 1, 0, 1, 0) 1r→ (1, 1, 0, 1, 0, 1, 0, 0) {0,1} {0,1} – –
(1, 0, 0, 1, 1, 0, 0, 1) 1r→ (1, 1, 0, 0, 0, 0, 1, 1) {0,1} – – {0,1}
(0, 1, 1, 0, 0, 1, 1, 0) 1r→ (0, 0, 1, 1, 1, 1, 0, 0) – {0,1} {0,1} –
(0, 1, 0, 1, 0, 1, 0, 1) 1r→ (0, 0, 1, 0, 1, 0, 1, 1) – – {0,1} {0,1}
(0, 0, 1, 1, 0, 0, 1, 1) 1r→ (0, 0, 0, 1, 0, 1, 1, 1) – {0,1} – {0,1}
(1, 1, 1, 0, 1, 1, 1, 0) 1r→ (1, 1, 1, 1, 1, 1, 0, 0) {0,1} {0,1} {0,1} –
(1, 1, 0, 1, 1, 1, 0, 1) 1r→ (1, 1, 1, 0, 1, 0, 1, 1) {0,1} – {0,1} {0,1}
(1, 0, 1, 1, 1, 0, 1, 1) 1r→ (1, 1, 0, 1, 0, 1, 1, 1) {0,1} {0,1} – {0,1}
(0, 1, 1, 1, 0, 1, 1, 1) 1r→ (0, 0, 1, 1, 1, 1, 1, 1) – {0,1} {0,1} {0,1}
(1, 1, 1, 1, 1, 1, 1, 1) 1r→ (1, 1, 1, 1, 1, 1, 1, 1) {0,1} {0,1} {0,1} {0,1}

For a mini-version of MESH-128 with 32-bit blocks even exhaustive key
search was not possible because the key size in this case is 64 bits. The weak-
key class sizes for linear relations of MESH-128 are estimated assuming that the
15 MSBs of a subkey are zero with a probability of 2−15, an assumption that has
been well approximated in experiments on the key schedules of MESH-64(16)
and MESH-96(24).

From Tables 5.11 and 5.12, the longest linear relations (starting from the
first round) are the following:

(a) (1, 0, 0, 0, 1, 0, 0, 0) 1r→ (1, 1, 0, 0, 0, 0, 0, 0) 0.5r→ (1, 1, 0, 0, 0, 0, 0, 0), provided
Z

(1)
1 , Z

(2)
2 ∈ {0, 1}, which imply a weak-key class of size exactly 2256−15∗2 =

2226;

(b) (0, 0, 1, 0, 0, 0, 1, 0) 1r→ (0, 0, 0, 1, 0, 1, 0, 0) 0.5r→ (0, 0, 0, 1, 0, 1, 0, 0), provided
Z

(1)
3 , Z

(2)
4 ∈ {0, 1}, which imply a weak-key class of size 2256−15∗2 = 2226;

(c) the iterative relation (1, 1, 1, 1, 1, 1, 1, 1) 1r→ (1, 1, 1, 1, 1, 1, 1, 1), repeated
for 3.5-rounds, provided Z

(1)
1 , Z

(1)
3 , Z

(1)
6 , Z

(1)
8 , Z

(2)
2 , Z

(2)
4 , Z

(2)
5 , Z

(2)
7 , Z

(3)
1 ,

Z
(3)
3 , Z

(3)
6 , Z

(3)
8 , Z

(4)
2 , Z

(4)
4 , Z

(4)
5 , Z

(4)
7 ∈ {0, 1}, which imply a weak-key

class of estimated size 2256−15∗16 = 216.
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Table 5.12: One-round linear relations for MESH-128 for even rounds.

Linear Relation Even-Round Subkeys
α(r) 1r→ α(r+1) Z

(r)
2 Z

(r)
4 Z

(r)
5 Z

(r)
7

(1, 0, 0, 0, 1, 0, 0, 0) 1r→ (1, 1, 0, 0, 0, 0, 0, 0) – – {0,1} –
(0, 1, 0, 0, 0, 1, 0, 0) 1r→ (0, 0, 1, 0, 1, 0, 0, 0) {0,1} – – –
(0, 0, 1, 0, 0, 0, 1, 0) 1r→ (0, 0, 0, 1, 0, 1, 0, 0) – – – {0,1}
(0, 0, 0, 1, 0, 0, 0, 1) 1r→ (0, 0, 0, 0, 0, 0, 1, 1) – {0,1} – –
(1, 1, 0, 0, 1, 1, 0, 0) 1r→ (1, 1, 1, 0, 1, 0, 0, 0) {0,1} – {0,1} –
(1, 0, 1, 0, 1, 0, 1, 0) 1r→ (1, 1, 0, 1, 0, 1, 0, 0) – – {0,1} {0,1}
(1, 0, 0, 1, 1, 0, 0, 1) 1r→ (1, 1, 0, 0, 0, 0, 1, 1) – {0,1} {0,1} –
(0, 1, 1, 0, 0, 1, 1, 0) 1r→ (0, 0, 1, 1, 1, 1, 0, 0) {0,1} – – {0,1}
(0, 1, 0, 1, 0, 1, 0, 1) 1r→ (0, 0, 1, 0, 1, 0, 1, 1) {0,1} {0,1} – –
(0, 0, 1, 1, 0, 0, 1, 1) 1r→ (0, 0, 0, 1, 0, 1, 1, 1) – {0,1} – {0,1}
(1, 1, 1, 0, 1, 1, 1, 0) 1r→ (1, 1, 1, 1, 1, 1, 0, 0) {0,1} – {0,1} {0,1}
(1, 1, 0, 1, 1, 1, 0, 1) 1r→ (1, 1, 1, 0, 1, 0, 1, 1) {0,1} {0,1} {0,1} –
(1, 0, 1, 1, 1, 0, 1, 1) 1r→ (1, 1, 0, 1, 0, 1, 1, 1) – {0,1} {0,1} {0,1}
(0, 1, 1, 1, 0, 1, 1, 1) 1r→ (0, 0, 1, 1, 1, 1, 1, 1) {0,1} {0,1} – {0,1}
(1, 1, 1, 1, 1, 1, 1, 1) 1r→ (1, 1, 1, 1, 1, 1, 1, 1) {0,1} {0,1} {0,1} {0,1}

Relations (a) and (b) can distinguish the first 1.5 rounds of MESH-128 from a
random permutation, or can be used in a 0.5R attack on 2-round MESH-128, to
recover Z

(2)
9 , Z

(2)
10 , Z

(2)
11 , Z

(2)
12 , with N ≈ 8 · (2−1)−2 = 32 chosen plaintexts and

32 · 264 = 269 parity computations. Relation (c) can distinguish the first 3.5-
round MESH-128 from a random permutation or can be used in a 0.5R attack on
4-round MESH-128 to recover Z

(4)
9 , Z

(4)
10 , Z

(4)
11 , Z

(4)
12 with the same complexity

as the attack on 2 rounds. Attacking 4.5 rounds involves guessing eight subkeys
of the fifth key-mixing layer, leading to a complexity of 269+128 = 2197 parity
computations.

Multiple-round linear relations can also be derived starting from an even
round. From Tables 5.11 and 5.12, the longest linear relations (starting from
the second round) are the following:

(d) (0, 1, 0, 0, 0, 1, 0, 0) 1r→ (0, 0, 1, 0, 1, 0, 0, 0) 0.5r→ (0, 0, 1, 0, 1, 0, 0, 0), provided
Z

(2)
2 , Z

(3)
3 ∈ {0, 1}, which imply a weak-key class of estimated size about

2256−15∗2 = 2226;

(e) (0, 0, 0, 1, 0, 0, 0, 1) 1r→ (0, 0, 0, 0, 0, 0, 1, 1) 0.5r→ (0, 0, 0, 0, 0, 0, 1, 1), provided
Z

(2)
4 , Z

(3)
8 ∈ {0, 1}, which imply a weak-key class of estimated size 2226;
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(f) (1, 0, 0, 0, 1, 0, 0, 0) 1r→ (1, 1, 0, 0, 0, 0, 0, 0) 0.5r→ (1, 1, 0, 0, 0, 0, 0, 0), provided
Z

(2)
5 , Z

(3)
1 ∈ {0, 1}, which imply a weak-key class of estimated size 2226;

(g) (0, 0, 1, 0, 0, 0, 1, 0) 1r→ (0, 0, 0, 1, 0, 1, 0, 0) 0.5r→ (0, 0, 0, 1, 0, 1, 0, 0), provided
Z

(2)
7 , Z

(3)
6 ∈ {0, 1}, which imply a weak-key class of estimated size 2226;

(h) the iterative relation (1, 1, 1, 1, 1, 1, 1, 1) 1r→ (1, 1, 1, 1, 1, 1, 1, 1) repeated for
3.5 rounds, provided Z

(2)
2 , Z

(2)
4 , Z

(2)
5 , Z

(2)
7 , Z

(3)
1 , Z

(3)
3 , Z

(3)
6 , Z

(3)
8 , Z

(4)
2 ,

Z
(4)
4 , Z

(4)
5 , Z

(4)
7 , Z

(5)
1 , Z

(5)
3 , Z

(5)
6 , Z

(5)
8 ∈ {0, 1}, which imply a weak-key

class of estimated size 2256−15∗16 = 216.

Relations (d), (e), (f) and (g) can distinguish 1.5-round MESH-128 (starting
from the second round) from a random permutation, or can be used in a 0.5R
attack on 2-round MESH-128 to recover subkeys Z

(3)
9 , Z

(3)
10 , Z

(3)
11 , Z

(3)
12 , with N ≈

8 · (2−1)−2 = 32 chosen plaintexts and about 32 ·264 = 269 parity computations.
Relation (h) can distinguish 3.5-round MESH-128 from a random permutation,
or can be used in a 0.5R attack on 4-round MESH-128 to recover Z

(5)
9 , Z

(5)
10 ,

Z
(5)
11 , Z

(5)
12 with the same complexities as the attack on 2-rounds.

5.11.4 New Linear Relations

In [232], Yıldırım presented new linear relations for the modular multiplication
in IDEA. These new linear relations use bit masks covering the two least signifi-
cant bits of the inputs and outputs of a multiplication, and hold with probability
one, under some subkey restrictions. Let X, Y, Z ∈ ZZ16

2 , such that Y = X ¯ Z,
where X = (x15, . . . , x0), and similarly for Y and Z. Let ΓX, ΓY, ΓZ be the
bit masks for X, Y and Z respectively. Table 5.13 lists linear relations for the
¯ operation. The first two rows in Table 5.13 represent linear relations from

Table 5.13: Subkey values and bits masks for linear relation X · ΓX⊕ Z · ΓZ =
Y · ΓY of Y = X ¯ Z.

Subkey Z ΓX ΓY ΓZ
0 0001x 0001x 0001x
1 0001x 0001x 0001x
2 0001x 0003x 0001x

216 − 1 0001x 0003x 0001x
215 0003x 0001x 0001x

215 + 1 0003x 0001x 0001x

Daemen et al. [58]. The last four rows are new relations from Yıldırım [232],
that extend Daemen’s linear relations up to the two LSBs of a word (except
that relations with bit mask 0002x are missing).
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One small drawback of Yıldırım’s linear relations is the fact that the weak
keys Z = 2 and Z = 216 − 1 contain opposite bit patterns, for instance, the
14 most significant bits of Z = 2 are all zero, while the corresponding bits of
Z = 216−1 are all one. This contrasts with Daemen’s weak keys, 0 and 1, where
in both cases the 15 most significant bits are zero. The latter weak keys allows
to identify a weak-key class in the key space of IDEA, by applying the subkey
restrictions to the key schedule. The former, though, impose contradictory con-
ditions: some user key bits would be required to be ‘0’ under some restrictions,
and ‘1’ under another. This last situation is similar to the new key schedule
algorithm proposed by Daemen, and described in Chap. 3, Sect. 3.6.

For MESH ciphers, in which there seems to be no key overlapping in the key
schedule, the situation is similar to the linear analysis in the previous sections.
The subkeys 2, 216 − 1, 215, 215 + 1 impose restrictions on at least 15 bits of
a subkey word. It is expected that after nine subkey restrictions, no user key
of MESH-64 can satisfy Yıldırım’s relations, since 2128 · (2−15)9 = 2−7. For
MESH-96 and MESH-128, 13 and 18 restrictions might be enough, respectively.
Moreover, for the latter two ciphers, it may not be possible to link one-round re-
lations beyond 2.5 rounds, because not all input/output bit-mask combinations,
restricted to the two LSBs of a word, may be available.

5.12 Gilbert-Minier Attack

The Gilbert-Minier attack [82], applied to Rijndael [61, 62], exploited the rela-
tively slow diffusion in the cipher in order to obtain collisions for partial func-
tions involving only a subset of the plaintext and ciphertext blocks. This attack,
nonetheless, does not apply to IDEA nor to MESH ciphers since complete dif-
fusion is achieved in one round.

5.13 Mod n Attack

Mod n attack is a technique described by Kelsey et al. in [109] and is cited
as an instance of the partitioning cryptanalysis [86] attack. The objective of
mod n attacks is to detect a bias in the distribution of outputs from a cipher,
related to its residue classes modulo n, for instance, n a prime number. It
has been noted in [109] that this attack is quite effective against ciphers that
mix modular addition with rotation operations (RC5P, M6), but is not effective
against ciphers using modular multiplication and exclusive-or, such as IDEA
and MESH ciphers.

5.14 Multiplicative Differential Attacks

At FSE 2002, Borisov et al. [39] described a new differential-style attack using
multiplicative differentials. Their attack applies to a variant of IDEA called
IDEA-X, in which all additions are substituted by exclusive-or operations.
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In [191], Raddum improved the attack by Borisov on IDEA-X by changing
only the additions in the first eight key-mixing half-rounds to exclusive-ors. This
new cipher was called IDEA-X/2.

Raddum considers the discrete-logarithm mapping ψ(x) = logg x, where
g = 3 is a primitive element of GF(216 + 1)∗, as a homomorphism (actually
an isomorphism) between ZZ216 and GF(216 + 1)∗: a ¯ b = ψ−1(ψ(a) ¢ ψ(b)),
∀a, b ∈ ZZ216 . Further, Raddum computed the Difference Distribution Table for
ψ, considering it a 16-bit bijective S-box. In particular, the input difference
∆X = X ⊕X∗ = FFFDx caused the output difference ∆Y = ψ(X) ¯ ψ(X∗) =
8000x with probability about 2−1. The difference ∆Y is preserved by the subkey
addition. For ψ−1, the reversed differential ∆Y = 8000x → ∆X = FFFDx
also holds with probability 2−1. These differences may be combined into the
differential ∆X → ∆X across the ¯ operation, with a subkey Z

(r)
i , i ∈ {1, 4},

and average probability 2−2 over all subkeys.
The plaintext difference for IDEA-X/2 had the form ∆P = (FFFDx, FFFDx,

FFFDx, FFFDx), and the exclusive-or is the difference operator. For the multi-
plicative subkeys (Z(r)

1 , Z
(r)
4 ), ψ causes the difference FFFDx to propagate with

probability 2−2 per subkey (or 2−1 per S-box). For the additive subkeys (Z(r)
2 ,

Z
(r)
3 ) in the key-mixing layer, that are combined via exclusive-or, the given dif-

ference propagates always. Therefore, for the key mixing, ∆P → ∆P with
probability 2−4. Since the word-wise differences are all the same after the key
mixing, the inputs to the MA-box are all zero, and the round output difference
is ∆P , namely, ∆P is a one-round iterative multiplicative characteristic with
average probability 2−4. Concatenating ∆P with itself eight times results in a
multiplicative differential characteristic with average probability (2−4)8 = 2−32.
There is an optimization that allows the probability to be increased to 2−30.
Since the plaintexts are chosen, the output of ψ for the text pairs can be chosen
in order to obtain the difference ∆Y = 8000x with certainty. This filtering
increases the probability for the first round to 2−2 from 2−4. The overall prob-
ability of the characteristic becomes 2−2 · 2−4·7 = 2−30. The attack takes 233

IDEA-X/2 encryptions, and 233 chosen plaintexts.

5.14.1 Multiplicative-Differential Attack on MESH-64

Raddum’s attack applies to MESH-64-X/2, which stands for a cipher variant
of MESH-64 with only the additions in the first eight key-mixing half-rounds
changed to xor, and with the same characteristic as for IDEA-X/2, because the
multiplicative differential bypasses the MA-box in every round.13

An important difference between Raddum’s attack on MESH-64-X/2 and
on IDEA-X/2, is that in the former the user key bits are not recovered because
according to the key schedule:

Z
(9)
1 = (((((Z(7)

7 ¢ Z
(8)
1 )⊕ Z

(8)
2 ) ¢ Z

(8)
5 )⊕ Z

(8)
6 ) ¢ Z

(8)
7 ) ≪ 7⊕ c56 ,

13Notice that IDEA-X/2, MESH-64-X/2, MESH-96-X/2, and MESH-128-X/2 violate the
principle that no operation should be used twice in succession anywhere in the cipher.
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Z
(9)
2 = (((((Z(8)

1 ¢ Z
(8)
2 )⊕ Z

(8)
3 ) ¢ Z

(8)
6 )⊕ Z

(8)
7 ) ¢ Z

(9)
1 ) ≪ 7⊕ c57 ,

Z
(9)
3 = (((((Z(8)

2 ¢ Z
(8)
3 )⊕ Z

(8)
4 ) ¢ Z

(8)
7 )⊕ Z

(9)
1 ) ¢ Z

(9)
2 ) ≪ 7⊕ c58 ,

and

Z
(9)
4 = (((((Z(8)

3 ¢ Z
(8)
4 )⊕ Z

(8)
5 ) ¢ Z

(9)
1 )⊕ Z

(9)
2 ) ¢ Z

(9)
3 ) ≪ 7⊕ c59 .

Therefore, the subkeys of the output transformation (OT) do not provide enough
information to recover user key bits.

In order for MESH-64-X/2 to resist Raddum’s attack, the number of rounds
should be increased to 17 so that the probability of the multiplicative differential
becomes 2−2·(2−4)16 = 2−66 requiring more data than available in the codebook.

Another observation is that Raddum’s attack can actually be applied to
IDEA, namely, without any change of operators. Consider the additive subkeys
Z such that Z ∈ {0000x, 8000x}. For such subkeys, addition and exclusive-or
provide the same result. Therefore, for these weak additive subkeys, Raddum’s
attack applies to IDEA, though only for a particular weak-key class. According
to the key schedule of IDEA, if subkeys Z

(i)
2 , Z

(i)
3 , for 1 ≤ i ≤ 9 are restricted to

{0000x, 8000x} then it implies that the key bits numbered 0–8, 17–83, 92–127
have to be zero, while key bits 9–16, 84–91 can be arbitrary. This represents
a weak-key class of size 216. If Raddum’s attack could be extended to also
recover (Z(1)

2 , Z
(1)
3 ), then the key bits numbered 9–25, 41–45, 84–91 could be

arbitrary, increasing the weak-key class size to 230. Although this multiplicative-
differential weak-key class is smaller than Daemen’s (223), the two classes do
not overlap; thus, it is a new weak-key class not covered by Daemen.

It is also interesting to observe a duality between the key restrictions of
Daemen’s differential attack [58], with those of Raddum’s multiplicative differ-
entials [191] on IDEA. Notice that while in Daemen’s attack some multiplicative
subkeys have the most significant 15 bits restricted to zero, in Raddum’s mul-
tiplicative differential attack, some additive subkeys are restricted to have the
least significant 15 bits set to zero.

The weak-key assumption was tested exhaustively for 232 keys in the mini-
version of MESH-64 with 4-bit words, with the subkeys left-rotated by three
bits, in order to determine if it would be possible for its key schedule algorithm
to generate additive subkeys Z

(i)
2 , Z

(i)
3 for i odd, and Z

(i)
1 , Z

(i)
4 for i even, all

of which have the three least significant bits zero. No such key was identified.
For MESH-64, it is estimated that similar results apply, in the sense that the
combination of ¢, ⊕ and bitwise rotation in key schedule avoid the key-bit
patterns required for Raddum’s attack.

5.14.2 Multiplicative-Differential Attack on MESH-96

Raddum’s attack applies to MESH-96-X/2, that is, on a modified version of
MESH-96 in which all additions in the first ten key-mixing half-rounds are
changed to exclusive-ors. The attack would hold with probability about 2−3 ·
(2−6)9 = 2−57 (with the extra optimization in the first key mixing), and would
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recover the subkeys of the output transformation with about 260 chosen plain-
texts. In order to resist Raddum’s attack, MESH-96-X/2 would need to have 17
rounds, so that the probability of the multiplicative differential would become
2−3 · (2−6)16 = 2−99, requiring more data than available in the codebook.

Exhaustive key search was conducted in the mini-version of MESH-96 with
24-bit blocks14 in order to verified if there exist any user key that could generate
additive subkeys (of the key-mixing layers) whose least significant three bits were
simultaneously zero. There are no such keys. For MESH-96, it is estimated that
the same results apply, in the sense that the combination of ¢, ⊕ and bitwise
rotation in the key schedule avoid the key-bit patterns required in Raddum’s
attack.

5.14.3 Multiplicative-Differential Attack on MESH-128

Raddum’s attack applies to MESH-128-X/2, that is, on a modified version of
MESH-128 in which all additions in the first twelve key-mixing half-rounds
are changed to exclusive-ors. The attack would hold with probability 2−4 ·
(2−8)11 = 2−92, and would recover the subkeys of the output transformation
with about 295 chosen plaintexts. In order to resist Raddum’s attack, MESH-
128-X/2 would need to have at least 17 rounds, so that the probability of the
multiplicative differential would become 2−4 · (2−8)16 = 2−132, requiring more
data than available in the codebook.

A partial exhaustive key search was conducted in the mini-version of MESH-
128 with 32-bit blocks,15 in order to determine if there exist any user key that
could generate additive subkeys (of the key-mixing layers) whose least significant
three bits were simultaneously zero. There are no such keys.16 For MESH-128,
it is estimated that similar results apply, in the sense that the combination of ¢,
⊕ and bitwise rotation in the key schedule avoid the key-bit patterns required
in Raddum’s attack.

5.15 Algebraic Attack

Recently, in [55], Courtois and Pieprzyk described algebraic attacks on block
ciphers such as Rijndael and Serpent. Their approach was to derive multivariate
algebraic equations (with probability one) from the S-boxes of these ciphers, and
further obtain a system of (overdefined) multivariate equations, more specifically
quadratic equations, involving the input and output bits of the whole cipher.
This system would be solved by algorithms called XL [54], or XSL [55], requiring
a few plaintext/ciphertext pairs.

One requirement of the algebraic attack is that quadratic equations can be
derived from S-boxes or other non-linear operations. For MESH ciphers the

14And 48-bit keys, with a similar key schedule as in MESH-96, but with the subkeys left-
rotated by 3 bits.

15Using a similar key schedule as in MESH-128 but with the subkeys left-rotated by 3 bits.
16These restrictions are similar to the ones imposed on the key schedule of MESH-128 in a

linear attack, Sect 5.11.
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multiplication is the main non-linear operation, and it can be represented by
a combination of two S-boxes, one based on (discrete) exponentiation and (its
inverse) based on (discrete) logarithm. Recall that GF(216 + 1) is a cyclic
group, which means that there is a generator g ∈ ZZ∗216+1, such that < g >=
GF(216 + 1). For GF(216 + 1) there are φ(φ(216 + 1)) = 215 generators [160,
p. 70, Chap. 2], where φ(.) is Euler’s totient function. Consider, for example,
g = 3. Then, for any x, y ∈ ZZ216 there are a, b ∈ ZZ∗216+1 such that 3x = a, and
3y = b. Analogously, a discrete logarithm function can be defined as log3a =
x ⇔ 3x = a, for x ∈ ZZ216 , and a ∈ ZZ∗216+1. It follows (Raddum [191]) that
a ¯ b = 3x · 3y = 3log3a�log3b. Therefore, if a (discrete) exponentiation and
logarithm tables can be defined, then a multiplication operation in GF(216 + 1)
can be accomplished with three table lookups and an addition at the cost of
2 · 2 · 216 = 218 bytes or 256 Kbytes of memory.

Computation of potential algebraic equations for the discrete logarithmic
and exponentiation tables, with all 215 generators, using the same approach as
Biryukov and De Cannière in [29], did not detect any quadratic equation in-
volving the sixteen input bits and the sixteen output bits of the exponentiation
S-box.17 Analogously, for g = 3, no cubic nor 4th-degree equations were de-
tected, implying that the discrete exponentiation and logarithmic S-boxes do
not seem to present a simple algebraic structure.

Analogously, computations on GF(28 + 1), for the 32-bit block mini MESH
variants did not detect any quadratic equation involving the eight input and
eight output bits for the discrete logarithm and exponentiation S-boxes, for any
of the φ(φ(28 + 1)) = 128 generators of GF(28 + 1).

The algebraic attack on block ciphers has been the subject of considerable
debate [164]. If this attack can be applied to real block ciphers such as MESH
and IDEA, then the derived system of algebraic equations will need to include
5th-degree equations. For the time being an algebraic attack to any of the
MESH ciphers seems elusive.

5.16 Boomerang Attacks

This section describes boomerang attacks on the MESH ciphers, in a simi-
lar setting as in Chap. 4, Sect. 4.6 for IDEA. The boomerang attacks on the
MESH ciphers operate under weak-key assumptions, such as in linear attacks
(Sect. 5.11). Nonetheless, since the key schedules of the MESH ciphers do not
provide a simple mapping from subkeys to user key bits (such as in IDEA),
the size of the weak-key classes will be estimated using the same approach as
taken for linear attacks. The difference operator is exclusive-or and non-zero
differences are always constructed with the value ν = 8000x.

17The analysis can be restricted to one S-box, since the gx S-boxes is the inverse of the
logg S-box, and any algebraic equation for one of them can be converted to the other by just
changing the input for the output variables.



172 CHAPTER 5. DESIGN AND ANALYSIS OF THE MESH CIPHERS

5.16.1 Boomerang Attack on MESH-64

The first step for a boomerang attack on MESH-64 is to define one-round char-
acteristics under weak-key assumptions for each kind of round. Table 5.14 sum-
marizes the results for the odd rounds, and Table 5.15 for the even rounds,
where δr and δr+1 denote the round input and output differences.

Table 5.14: One-round characteristics for odd rounds of MESH-64.

Characteristic Odd-Round Subkeys
δr

1r→ δr+1 Z
(r)
1 Z

(r)
4 Z

(r)
5 Z

(r)
6 Z

(r)
7

(0, 0, 0, ν) 1r→ (0, 0, ν, 0) – {0,1} – {0,1} {0,1}
(0, 0, ν, 0) 1r→ (ν, 0, 0, 0) – – {0,1} {0,1} –
(0, 0, ν, ν) 1r→ (ν, 0, ν, 0) – {0,1} {0,1} – {0,1}
(0, ν, 0, 0) 1r→ (0, 0, 0, ν) – – – {0,1} {0,1}
(0, ν, 0, ν) 1r→ (0, 0, ν, ν) – {0,1} – – –
(0, ν, ν, 0) 1r→ (ν, 0, 0, ν) – – {0,1} – {0,1}
(0, ν, ν, ν) 1r→ (ν, 0, ν, ν) – {0,1} {0,1} {0,1} –
(ν, 0, 0, 0) 1r→ (0, ν, 0, 0) {0,1} – {0,1} {0,1} –
(ν, 0, 0, ν) 1r→ (0, ν, ν, 0) {0,1} {0,1} {0,1} – {0,1}
(ν, 0, ν, 0) 1r→ (ν, ν, 0, 0) {0,1} – – – –
(ν, 0, ν, ν) 1r→ (ν, ν, ν, 0) {0,1} {0,1} – {0,1} {0,1}
(ν, ν, 0, 0) 1r→ (0, ν, 0, ν) {0,1} – {0,1} – {0,1}
(ν, ν, 0, ν) 1r→ (0, ν, ν, ν) {0,1} {0,1} {0,1} {0,1} –
(ν, ν, ν, 0) 1r→ (ν, ν, 0, ν) {0,1} – – {0,1} {0,1}
(ν, ν, ν, ν) 1r→ (ν, ν, ν, ν) {0,1} {0,1} – – –

Based on the tables, the longest boomerang found covers 5.5-round MESH-64
and uses the differential patterns ∆ → ∆∗, where ∆ = (0, ν, 0, ν) 1r→ (0, 0, ν, ν)
1r→ (ν, 0, ν, 0) 1r→ (ν, ν, 0, 0) 0.5r→ (ν, ν, 0, 0) = ∆∗ across the first 3.5 rounds, and
∇ → ∇∗, where ∇ = (ν, ν, 0, 0) 1r→ (ν, 0, ν, 0) = ∇∗ across one round. Both
characteristics hold with probability one provided Z

(1)
4 , Z

(2)
3 , Z

(2)
5 , Z

(2)
7 , Z

(3)
1 ,

Z
(4)
2 , Z

(5)
1 ∈ {0, 1}. These characteristics were chosen in order to minimize the

number of weak-key restrictions, and therefore, maximize the weak-key class
size. The size of the weak-key class is (optimistically) estimated as 2128−15∗7 =
223, if all the restrictions would hold independently. There is a gap consisting
of the MA-box of the 4th round. This gap can be crossed with a single quartet,
because the situation is similar to the gaps in the boomerangs numbered (13)
and (14) in Table 4.7 in Chap. 4. The key-mixing half-round of the 6th round is
not covered by either characteristic which implies that the boomerang direction
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Table 5.15: One-round characteristics for even rounds of MESH-64.

Characteristic Even-Round Subkeys
δr

1r→ δr+1 Z
(r)
2 Z

(r)
3 Z

(r)
5 Z

(r)
6 Z

(r)
7

(0, 0, 0, ν) 1r→ (0, 0, ν, 0) – – – {0,1} {0,1}
(0, 0, ν, 0) 1r→ (ν, 0, 0, 0) – {0,1} {0,1} {0,1} –
(0, 0, ν, ν) 1r→ (ν, 0, ν, 0) – {0,1} {0,1} – {0,1}
(0, ν, 0, 0) 1r→ (0, 0, 0, ν) {0,1} – – {0,1} {0,1}
(0, ν, 0, ν) 1r→ (0, 0, ν, ν) {0,1} – – – –
(0, ν, ν, 0) 1r→ (ν, 0, 0, ν) {0,1} {0,1} {0,1} – {0,1}
(0, ν, ν, ν) 1r→ (ν, 0, ν, ν) {0,1} {0,1} {0,1} {0,1} –
(ν, 0, 0, 0) 1r→ (0, ν, 0, 0) – – {0,1} {0,1} –
(ν, 0, 0, ν) 1r→ (0, ν, ν, 0) – – {0,1} – {0,1}
(ν, 0, ν, 0) 1r→ (ν, ν, 0, 0) – {0,1} – – –
(ν, 0, ν, ν) 1r→ (ν, ν, ν, 0) – {0,1} – {0,1} {0,1}
(ν, ν, 0, 0) 1r→ (0, ν, 0, ν) {0,1} – {0,1} – {0,1}
(ν, ν, 0, ν) 1r→ (0, ν, ν, ν) {0,1} – {0,1} {0,1} –
(ν, ν, ν, 0) 1r→ (ν, ν, 0, ν) {0,1} {0,1} – {0,1} {0,1}
(ν, ν, ν, ν) 1r→ (ν, ν, ν, ν) {0,1} {0,1} – – –

is bottom up, namely, text structures will be created to bypass the last key
mixing, determining the direction of the boomerang (same as in the boomerang
numbered (14) in Sect. 4.6.1, Chap. 4). The attack proceeds as follows: prepare
two sets of ciphertexts in which the first words differ by ν, the third and fourth
words are equal and the second words assume 28 random values each. This
text structure can form 216 pairs with difference (ν, δ, 0000x, 0000x). After
decryption by the last key mixing, each possible 16-bit difference is suggested
by δ and Z

(6)
2 about 22∗8 · 2−16 = 1 on average, and that is enough to cross the

gap. The attack complexity is 2 · (28 +28) = 210 chosen texts and 210 5.5-round
MESH-64 computations.

5.16.2 Boomerang Attack on MESH-96

The first step for a boomerang attack on MESH-96 is to define one-round char-
acteristics under weak-key assumptions for each kind of round. Table 5.16 sum-
marizes the results, where δr and δr+1 denote the round input and output
differences, respectively.

Analogous to the linear attack on MESH-96, it can be observed that the
MA-box does not allow all possible non-zero differential patterns with value ν
to cross it. More precisely, no non-trivial difference pattern with at least one
word with difference ν can cross the MA-box with probability one. This is due
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Table 5.16: One-round characteristics for MESH-96.

Characteristic Odd Rounds Even Rounds
δr

1r→ δr+1 Z
(r)
1 Z

(r)
3 Z

(r)
5 Z

(r)
2 Z

(r)
4 Z

(r)
6

(ν, 0, 0, ν, 0, 0) 1r→ (ν, ν, 0, 0, 0, 0) {0,1} – – – {0,1} –
(0, ν, 0, 0, ν, 0) 1r→ (0, 0, ν, ν, 0, 0) – – {0,1} {0,1} – –
(0, 0, ν, 0, 0, ν) 1r→ (0, 0, 0, 0, ν, ν) – {0,1} – – – {0,1}
(ν, ν, 0, ν, ν, 0) 1r→ (ν, ν, ν, ν, 0, 0) {0,1} – {0,1} {0,1} {0,1} –
(ν, 0, ν, ν, 0, ν) 1r→ (ν, ν, 0, 0, ν, ν) {0,1} {0,1} – – {0,1} {0,1}
(0, ν, ν, 0, ν, ν) 1r→ (0, 0, ν, ν, ν, ν) – {0,1} {0,1} {0,1} – {0,1}
(ν, ν, ν, ν, ν, ν) 1r→ (ν, ν, ν, ν, ν, ν) {0,1} {0,1} {0,1} {0,1} {0,1} {0,1}

to the design of the MA-box, in which multiplications do not involve subkeys
directly as an operand. Therefore, the non-zero differences cannot propagate
by just setting subkeys to values 0 or 1. That explains the reduced number of
one-round characteristics in comparison to MESH-64. Notice that only the last
one-round characteristic in Table 5.16 can be concatenated to more than one
round (it is the only iterative one).

Based on Table 5.16, the longest boomerang found can cover 5.5 rounds
of MESH-96. The boomerang consists of two differential patterns. One is
∆ → ∆∗, where ∆ = (ν, 0, 0, ν, 0, 0) 1r→ (ν, ν, 0, 0, 0, 0) 0.5r→ (ν, ν, 0, 0, 0, 0) = ∆∗

covering the first 1.5 rounds, and the other is ∇ → ∇∗, where ∇ = ∇∗ =
(ν, ν, ν, ν, ν, ν), covering three rounds. Both characteristics hold with probability
one, provided Z

(1)
1 , Z

(2)
2 , Z

(3)
1 , Z

(3)
3 , Z

(3)
5 , Z

(4)
2 , Z

(4)
4 , Z

(4)
6 , Z

(5)
1 , Z

(5)
3 , Z

(5)
5 ∈

{0, 1}. Assuming each subkey restriction holds independently, the weak-key
class size is (optimistically) estimated as 2192−15∗11 = 227. The differential
patterns were chosen in order to minimize the number of subkeys restrictions.

There is a gap consisting of the MA-box of the 2nd round, but only one
quartet is enough to cross it. The situation is analogous to the boomerangs
numbered (13) and (14) in Table 4.7, in Chap. 4. The key-mixing half-round
of the 6th round is not covered by either characteristic, which implies that the
boomerang direction is bottom up (same as in the boomerang numbered (14)
in Sect. 4.6.1, Chap. 4). The attack proceeds as follows: prepare two sets of
ciphertexts in which the 1st, 3rd, and 5th words differ by ν, while the 2nd, 4th
and 6th words assume 28 random values each. This text structure can form
(28 · 28 · 28)2 = 248 pairs of the form (ν, δ1, ν, δ2, ν, δ3). After decryption by the
last key mixing, it is expected that each possible 16-bit difference is suggested
by (δ1, Z

(6)
2 ), by (δ2, Z

(6)
4 ), and by (δ3, Z

(6)
6 ), about 248 · 2−3∗16 = 1 on average,

and that is enough to cross the gap. The attack complexity is 4 ·28 ·28 ·28 = 226

chosen texts and 226 5.5-round MESH-96 computations.
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5.16.3 Boomerang Attack on MESH-128

The first step for a boomerang attack on MESH-128 is to define one-round
characteristics, under weak-key assumptions, for each kind of round. Table 5.17
summarizes the results for odd rounds, and Table 5.18 for even rounds, where
δr and δr+1 denote the input and output differences, respectively.

Table 5.17: One-round characteristics for odd rounds of MESH-128.

Characteristic Odd-Round Subkeys
δr

1r→ δr+1 Z
(r)
1 Z

(r)
3 Z

(r)
6 Z

(r)
8

(ν, 0, 0, 0, ν, 0, 0, 0) 1r→ (ν, ν, 0, 0, 0, 0, 0, 0) {0,1} – – –
(0, ν, 0, 0, 0, ν, 0, 0) 1r→ (0, 0, ν, 0, ν, 0, 0, 0) – – {0,1} –
(0, 0, ν, 0, 0, 0, ν, 0) 1r→ (0, 0, 0, ν, 0, ν, 0, 0) – {0,1} – –
(0, 0, 0, ν, 0, 0, 0, ν) 1r→ (0, 0, 0, 0, 0, 0, ν, ν) – – – {0,1}
(ν, ν, 0, 0, ν, ν, 0, 0) 1r→ (ν, ν, ν, 0, ν, 0, 0, 0) {0,1} – {0,1} –
(ν, 0, ν, 0, ν, 0, ν, 0) 1r→ (ν, ν, 0, ν, 0, ν, 0, 0) {0,1} {0,1} – –
(ν, 0, 0, ν, ν, 0, 0, ν) 1r→ (ν, ν, 0, 0, 0, 0, ν, ν) {0,1} – – {0,1}
(0, ν, ν, 0, 0, ν, ν, 0) 1r→ (0, 0, ν, ν, ν, ν, 0, 0) – {0,1} {0,1} –
(0, ν, 0, ν, 0, ν, 0, ν) 1r→ (0, 0, ν, 0, ν, 0, ν, ν) – – {0,1} {0,1}
(0, 0, ν, ν, 0, 0, ν, ν) 1r→ (0, 0, 0, ν, 0, ν, ν, ν) – {0,1} – {0,1}
(ν, ν, ν, 0, ν, ν, ν, 0) 1r→ (ν, ν, ν, ν, ν, ν, 0, 0) {0,1} {0,1} {0,1} –
(ν, ν, 0, ν, ν, ν, 0, ν) 1r→ (ν, ν, ν, 0, ν, 0, ν, ν) {0,1} – {0,1} {0,1}
(ν, 0, ν, ν, ν, 0, ν, ν) 1r→ (ν, ν, 0, ν, 0, ν, ν, ν) {0,1} {0,1} – {0,1}
(0, ν, ν, ν, 0, ν, ν, ν) 1r→ (0, 0, ν, ν, ν, ν, ν, ν) – {0,1} {0,1} {0,1}
(ν, ν, ν, ν, ν, ν, ν, ν) 1r→ (ν, ν, ν, ν, ν, ν, ν, ν) {0,1} {0,1} {0,1} {0,1}

Similar to the attack on MESH-96, the MA-box of MESH-128 contains mul-
tiplications in which subkeys are not directly involved as operands. More-
over, only the last entries in Tables 5.17 and 5.18 can be concatenated to
more than 1.5 rounds. Based on these tables, the longest boomerang found
can cover 5.5 rounds of MESH-128. The boomerang consists of the differen-
tial patterns ∆ → ∆∗, where ∆ = (ν, 0, 0, 0, ν, 0, 0, 0) 1r→ (ν, ν, 0, 0, 0, 0, 0, 0)
0.5r→ (ν, ν, 0, 0, 0, 0, 0, 0) = ∆∗, and the other is ∇ → ∇∗, where ∇ = ∇∗ =
(ν, ν, ν, ν, ν, ν, ν, ν), covering three rounds. Both characteristics hold with prob-
ability one, provided Z

(1)
1 , Z

(2)
2 , Z

(3)
1 , Z

(3)
3 , Z

(3)
6 , Z

(3)
8 , Z

(4)
2 , Z

(4)
4 , Z

(4)
5 , Z

(4)
7 ,

Z
(5)
1 , Z

(5)
3 , Z

(5)
6 , Z

(5)
8 ∈ {0, 1}. Assuming each subkey restriction holds indepen-

dently, the weak-key class size is (optimistically) estimated as 2256−15∗14 = 246.
There is a gap consisting of the MA-box of the 2nd round, but only one

quartet is enough to cross it. The situation is analogous to the boomerangs
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Table 5.18: One-round characteristics for even rounds of MESH-128.

Characteristic Even-Round Subkeys
δr

1r→ δr+1 Z
(r)
2 Z

(r)
4 Z

(r)
5 Z

(r)
7

(ν, 0, 0, 0, ν, 0, 0, 0) 1r→ (ν, ν, 0, 0, 0, 0, 0, 0) – – {0,1} –
(0, ν, 0, 0, 0, ν, 0, 0) 1r→ (0, 0, ν, 0, ν, 0, 0, 0) {0,1} – – –
(0, 0, ν, 0, 0, 0, ν, 0) 1r→ (0, 0, 0, ν, 0, ν, 0, 0) – – – {0,1}
(0, 0, 0, ν, 0, 0, 0, ν) 1r→ (0, 0, 0, 0, 0, 0, ν, ν) – {0,1} – –
(ν, ν, 0, 0, ν, ν, 0, 0) 1r→ (ν, ν, ν, 0, ν, 0, 0, 0) {0,1} – {0,1} –
(ν, 0, ν, 0, ν, 0, ν, 0) 1r→ (ν, ν, 0, ν, 0, ν, 0, 0) – – {0,1} {0,1}
(ν, 0, 0, ν, ν, 0, 0, ν) 1r→ (ν, ν, 0, 0, 0, 0, ν, ν) – {0,1} {0,1} –
(0, ν, ν, 0, 0, ν, ν, 0) 1r→ (0, 0, ν, ν, ν, ν, 0, 0) {0,1} – – {0,1}
(0, ν, 0, ν, 0, ν, 0, ν) 1r→ (0, 0, ν, 0, ν, 0, ν, ν) {0,1} {0,1} – –
(0, 0, ν, ν, 0, 0, ν, ν) 1r→ (0, 0, 0, ν, 0, ν, ν, ν) – {0,1} – {0,1}
(ν, ν, ν, 0, ν, ν, ν, 0) 1r→ (ν, ν, ν, ν, ν, ν, 0, 0) {0,1} – {0,1} {0,1}
(ν, ν, 0, ν, ν, ν, 0, ν) 1r→ (ν, ν, ν, 0, ν, 0, ν, ν) {0,1} {0,1} {0,1} –
(ν, 0, ν, ν, ν, 0, ν, ν) 1r→ (ν, ν, 0, ν, 0, ν, ν, ν) – {0,1} {0,1} {0,1}
(0, ν, ν, ν, 0, ν, ν, ν) 1r→ (0, 0, ν, ν, ν, ν, ν, ν) {0,1} {0,1} – {0,1}
(ν, ν, ν, ν, ν, ν, ν, ν) 1r→ (ν, ν, ν, ν, ν, ν, ν, ν) {0,1} {0,1} {0,1} {0,1}

numbered (13) and (14) in Table 4.7, in Chap. 4. The key-mixing half-round
of the 6th round is not covered by either characteristic, which implies that
the boomerang direction is bottom up (same as in the boomerang numbered
(14) in Sect. 4.6.1, Chap. 4). The attack proceeds as follows: prepare two
sets of ciphertexts in which the 1st, 3rd, 6th and 8th words differ by ν, while
the 2nd, 4th, 5th and 7th words assume 28 random values each. This text
structure can form (28 ·28 ·28 ·28)2 = 264 pairs of the form (ν, δ1, ν, δ2, δ3, ν, δ4, ν).
After decryption by the last key mixing, it is expected that each possible 16-bit
difference is suggested by (δ1, Z

(6)
2 ), by (δ2, Z

(6)
4 ), by (δ3, Z

(6)
5 ), and by (δ4, Z

(6)
7 ),

about 264 · 2−4∗16 = 1 on average, and that is enough to cross the gap. The
attack complexity is 4 · 28 · 28 · 28 · 28 = 234 chosen texts and 234 5.5-round
MESH-128 computations.

5.17 Performance

The software performance figures for MESH ciphers are shown in Table 5.19.
These figures were estimated from the number of multiplications compared to
those in IDEA. Simulations demonstrate that one ¯ costs about three times
more than an ¢ or an ⊕ operation. Comparison with the performances of
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Table 5.19: Performance estimates of MESH ciphers, IDEA, triple-DES and
AES.

Cipher Block Key #Rounds #Cycles/Byte #Cycles/Key
Size Size Encrypted Setup

AES 128 128 10 25 3695
128 192 12 30 4095
128 256 14 34 4969

triple-DES 64 168 48 154 83715
IDEA 64 128 8.5 56 1888
MESH-64 64 128 8.5 70 2054
MESH-96 96 192 10.5 92 3869
MESH-128 128 256 12.5 122 5536

triple-DES [184] and AES [185], on a common platform, a Pentium III under
Linux, from the NESSIE document D21 [15, p. 51–52] are listed in the fifth
column of Table 5.19. Neither IDEA nor any MESH cipher is faster than the
new AES [185]. Therefore, the performance of MESH ciphers are compared
against that of triple-DES, with estimates based on the number of ¯ operations.
For instance, 8.5-round MESH-64 uses 42 multiplications (Table 5.1), compared
to 34 in IDEA. Since both encrypt the same amount of bits, an estimation for
the number of cycles per byte in MESH-64 is 56 · (42/34) ≈ 70 cycles per byte,
about 25% slower than IDEA. Simulations show performance about 30% slower
than IDEA, due to an increased number of (unaccounted) modular additions.
MESH-96 with 10.5 rounds uses 83 multiplications (Table 5.1), but encrypts
12 bytes in comparison to eight bytes of IDEA. This means a performance of
56 · (83/34) · (8/12) ≈ 92 cycles per byte, about 64% slower than IDEA. MESH-
128, with 12.5 rounds uses 148 multiplications (Table 5.1), but encrypts 16 bytes
instead of eight in IDEA. This implies a performance of roughly 56 · (148/34) ·
(8/16) ≈ 122 cycles per byte, an 118% overhead. The rightmost column contains
independent key setup time estimates made on a Pentium III 667 MHz under
Linux.

5.18 Conclusions

This chapter described the 64-, 96- and 128-bit block MESH ciphers, which are
based on the same group operations of the IDEA cipher, but with some novel
features:

• Flexible block sizes in steps of 32 bits.

• New key schedule algorithms with fast key avalanche. Recall that each
subkey of IDEA depends (linearly) on exactly 16 user-defined key bits,
while in MESH all subkeys after the second round depend (non-linearly) on
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all user-defined key words. Moreover, the new key schedules seem to avoid
(differential and linear) weak keys such as in IDEA. Software simulations18

indicate about 1888 cycles/key setup for IDEA, 2054 cycles/key setup for
MESH-64, 3869 cycles/key setup for MESH-96, and 5536 cycles/key setup
for MESH-128.

• Larger MA-boxes that are bijective mappings for any fixed internal sub-
keys (to avoid non-surjective attacks [194]). The round structure of MESH
ciphers allow the same framework to be used for both encryption and de-
cryption, by only changing the subkeys for each kind of operation, such
as in IDEA.

• Asymmetric key-mixing layers that were originally designed to counter
slide attacks [33, 34], but also proved useful against Demirci’s attack
(Sect. 5.10.3).

Table 5.20 summarizes the attack complexities on (reduced-round) MESH
ciphers and IDEA. The notation ‘CP’ stands for ‘Chosen Plaintexts’, ‘KP’ for
‘Known Plaintexts’ and ‘CC/ACP’ for ’Chosen Ciphertext/Adaptively Chosen
Plaintext’. It can be noticed that attack requirements are higher for MESH-64
compared to similar attacks, on the same number of rounds, for IDEA (Chap. 4,
Sect. 4.6, Table 4.7 and Daemen [58]). Notice that boomerang and linear attacks
are restricted to a weak-key class only and are estimated based on attacks in mini-
versions.

There are natural extensions of the MESH ciphers to even larger block
sizes. Consider for instance MESH-160, a 160-bit block cipher with 320-bit
key. Nonetheless, if its performance is to be comparable to that of triple-DES,
then he number of rounds has to be set at 12.5 at most. This is a consequence of
the large MA-box containing 13 multiplications interleaved with 12 additions.
Beyond 160-bit block size the MA-box becomes even heavier, if the same number
of layers as the number of inputs is used. Instead, a mini-version of MESH-160
may provide a more attractive alternative. Consider for instance, MESH-80, a
byte-oriented cipher with 80-bit block size, 160-bit key, and 14.5 rounds, using
8-bit words. Since all operations are byte-wise, MESH-80 may be an interesting
cipher for operating in smart cards.

There are also larger variants of the MA-boxes including additional layers
(Fig. 5.7). The number of layers in the MA-boxes of MESH-64 and MESH-96,
for instance, could have been increased to four, so that the 1st-order Demirci’s
attack would not work, as observed in MESH-128, and more expensive higher-
order integral attacks would be needed (Sect. 5.10). One feature of a 4-layer-
MA-box variant of MESH-64 (Fig. 5.7(c)) would be that the key-mixing and MA
half-rounds employ the same number of subkeys, and attack extensions that just
guess subkeys in either an MA or a key-mixing half-round would require the
same effort of 264 trials. Comparatively, in IDEA and MESH-64 the complexity
of guessing the subkeys of an MA half-round is much lower (232 or 248) than

18On a Pentium III 667 MHz under Linux.
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Table 5.20: Summary of attack complexities on IDEA and MESH ciphers.

Cipher Attack #Rounds Data Memory Time
IDEA Demirci 2 23 CP 23 264

Demirci 2.5 55 CP 55 281

(8.5 rounds) Square 2.5 218 CP 218 268

Demirci 3 71 CP 71 271

Demirci 3 233 CP 233 282

Demirci 3.5 103 CP 103 2103

Trunc. Diff. 3.5 256 CP 232 267

Imposs. Diff. 3.5 238.5 CP 237 253

Demirci 4 234 CP 234 2114

Imposs. Diff. 4 238.5 CP 237 270

Imposs. Diff. 4.5 264 CP 232 2112

MESH-64 Demirci 2 221 CP 216 247

Demirci 2.5 221 CP 216 2111

(8.5 rounds) Square 2.5 250.5 CP 216 276

Square 3 250.5 CP 216 2124

Imposs. Diff. 3.5 239.5 CP 261 264

Trunc. Diff. 3.5 264 CP 232 278

Imposs. Diff. 4 239.5 CP 261 2112

Trunc. Diff. 4 264 CP 232 2126

Linear 4.5 32 KP 32 221

Boomerang 5.5 210 CC/ACP 210 210

MESH-96 Demirci 2 221 CP 216 247

Demirci 2.5 221 CP 216 2143

(10.5 rounds) Square 2.5 250 CP 216 296

Square 3 250 CP 216 2144

Imposs. Diff. 3.5 256 CP 293 296

Trunc. Diff. 3.5 296 CP 264 2109

Linear 4 32 KP 32 253

Imposs. Diff. 4 256 CP 293 2144

Trunc. Diff. 4 296 CP 264 2157

Linear 4.5 32 KP 32 2149

Boomerang 5.5 226 CC/ACP 226 226

MESH-128 Demirci 2 237.6 CP 232 279

Demirci 2.5 237.6 CP 232 2143

(12.5 rounds) Square 2.5 250 CP 216 2128

Square 3 250 CP 216 2192

Imposs. Diff. 3.5 265 CP 2157 2128

Trunc. Diff. 3.5 2128 CP 264 2142

Linear 4 32 KP 32 269

Imposs. Diff. 4 265 CP 2157 2192

Trunc. Diff. 4 2128 CP 264 2206

Linear 4.5 32 KP 32 2197

Boomerang 5.5 234 CC/ACP 234 234
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Figure 5.7: Current and new MA-boxes of MESH ciphers.

guessing the subkeys of a key-mixing layer (264). Another interesting feature of
MA-boxes such as Figs. 5.7(c), 5.7(g) and 5.7(l) is that the full master key is used
in a single round, that is, the full key entropy can be exploited in each round, in
contrast to smaller MA-boxes. Table 5.21 lists the number of operations that an
r.5-round MESH cipher variant would use for each MA-box of Fig. 5.7. MESH-
96, for instance, uses the MA-box in Fig. 5.7(d), and has r.5 = 10.5 rounds.
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Table 5.21: Number of operations for r.5-round MESH cipher variants using
MA-boxes from Fig. 5.7.

MA-box ¯ ¢ ¯ ¢ ⊕
scheme subkeys subkeys operations operations operations

(a) 4r + 2 2r + 2 4r + 2 4r + 2 6r
(b) 5r + 2 2r + 2 5r + 2 5r + 2 6r
(c) 6r + 2 2r + 2 6r + 2 6r + 2 6r
(d) 5r + 3 4r + 3 8r + 3 7r + 3 9r
(e) 5r + 3 5r + 3 9r + 3 9r + 3 9r
(f) 6r + 3 5r + 3 11r + 3 10r + 3 9r
(g) 6r + 3 6r + 3 12r + 3 12r + 3 9r
(h) 8r + 4 4r + 4 12r + 4 12r + 4 12r
(i) 9r + 4 4r + 4 14r + 4 14r + 4 12r
(j) 10r + 4 4r + 4 16r + 4 16r + 4 12r
(k) 11r + 4 4r + 4 18r + 4 18r + 4 12r
(l) 12r + 4 4r + 4 20r + 4 20r + 4 12r
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Chapter 6

Conclusions and Open
Problems

Cryptographic algorithms are mathematical tools that provide for several useful
communication security services, such as privacy and authentication. These
services are typically used to secure the storage and transmission of several
kinds of digital information. Practical applications of these services include
electronic commerce transactions, teleconferencing, and e-government [56].

The importance of these services to society can be measured by two recent
events that have broad consequences on standardization efforts and interoper-
ability between commercial organizations: the AES Development Effort and the
NESSIE Project. The former was a process to select the successor block cipher
to the Data Encryption Standard (DES) algorithm, and was organized by the
National Institute for Standards and Technology (NIST) of the USA. The lat-
ter had a wider scope and aimed to mount a portfolio of strong cryptographic
primitives to provide not only data confidentiality, but also data integrity and
authentication.

It is therefore, very important to assess the (computational and theoreti-
cal) security of cryptographic primitives. This thesis has focused on analysis
techniques and on the design of iterated block ciphers. Among the analysis
techniques described in this work, a new approach to the linear cryptanalysis
of the SAFER ciphers made use of so called non-homomorphic relations. As
a consequence, attacks using these linear relations could reach more rounds of
many SAFER ciphers than previously known attacks, although restricted to a
weak-key class. These attacks, though do not apply to the full-round SAFER
ciphers.

Linear analysis were also applied to the Proposed Encryption Standard
(PES) cipher. In this case, linear attacks were not only restricted to the original
8.5-round PES, but could be extended up to 17-round PES, if its key schedule
is also extended in order to generate further subkeys. This analysis indicated
that even doubling the original number of rounds of PES was not enough to

183
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avoid weak keys. Weak keys represent a problem for block ciphers, not only
for confidentiality applications [165], but also when ciphers are used as building
blocks in other cryptographic primitives, such as in hash functions constructions
[41, 112, 188], stream ciphers, and message authentication codes. The results
on PES, together with those for IDEA, may suggest a need for a redesign of
their key schedule algorithms.

In some attack models it is assumed that an attacker is able to obtain pairs
of known plaintext and ciphertext. Under a less realistic, though more powerful
model, the attacker is given the ability to choose the plaintext and obtain the
corresponding ciphertext (or vice-versa). This approach become standard for
the analysis of modern block ciphers, and proved useful, in this work, against
three NESSIE candidates: IDEA, Hierocrypt-3 and Hierocrypt-L1. While the
attacks on Hierocrypt-3/-L1 improved on previous analyses, they still do not
apply to the full-round ciphers. The attack on IDEA, using the boomerang
technique, though, reached all 8.5 rounds of IDEA, and presented new weak-
key classes, namely, a subset of the key space for which keys can be identified
with a comparatively lower effort than for a random key.

A common point exploited in many attacks is the linearity of the key schedule
algorithms. In some key-recovery attacks the key schedule of some ciphers,
such as IDEA and SAFER, allowed many subkey key bits to be mapped to
the same user key bits, therefore, reducing the final attack complexity. The
conclusion is that particular care needs to be given to the design of the key
schedule algorithms, taking into account attack scenarios in which subkeys are
recovered at both ends of a cipher.

One further consequence of the analyses of PES and IDEA is the new block
cipher designs called MESH. Three designs were presented: MESH-64, MESH-
96, and MESH-128. These ciphers are based on the same group operations as
the IDEA block cipher. The main differences are: (i) the flexible block sizes
(in increments of 32 bits); (ii) the larger round functions (MA-boxes); (iii) the
asymmetric key mixings for even and odd rounds, and (iv) the new key schedule
algorithms.

For more than ten years, since the publication of IDEA in [137], no extended
IDEA variant has being proposed with block sizes larger than 64 bits (or word
sizes larger than 16 bits). Maybe the design of larger block-size variants was
believed to depend on the existence of Fermat primes, namely, prime numbers
of the form 22p

+ 1, with p > 4. Alas, 225
+ 1 = 232 + 1 = 641 · 6700417,1 and

therefore, the group ZZ∗232+1 is not a finite field. This fact implies that an IDEA
variant based on 32-bit words cannot be implemented using multiplication in
ZZ∗232+1. The new MESH designs do not depend on the existence of large Fermat
primes. The MESH ciphers build on the strength of the MA-box of IDEA, and
naturally extend the block size beyond 64 bits, in increments of 32 bits. The
idea is to extend the MA-box by interleaving the multiplication and addition
operations in a zig-zag pattern. Different analysis techniques were applied to
test the soundness of the new design. Current analysis results seem to indicate

1While the next Fermat number is factored as 226
+ 1 = 274177 · 67280421310721.
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a relatively large margin of security for MESH ciphers.
The key schedule algorithms were also re-designed to account for some gen-

eral and dedicated shortcut attacks. Almost all attacks on IDEA used the
property of the key overlapping in its key schedule. The main features of the
new key schedule algorithms of MESH ciphers are: (i) fast key avalanche; (ii)
non-linear dependency of the subkeys on the user key; and (iii) no key over-
lapping property. According to preliminary analyses, these key schedules seem
to avoid weak keys under different settings. One reason for the resilience of
MESH ciphers, besides the new MA-boxes, is the fact that complete diffusion
is achieved in one round (such as in IDEA).

The security of MESH cipher come at a price: performance. Software perfor-
mance of MESH ciphers, with timing estimates based on [15, p. 51–52], showed
that the MESH ciphers have performance better than or comparable to that of
triple-DES, but not better than that of the AES [185].

One last observation on MESH ciphers relates to the recent algebraic attacks
of Courtois and Pieprzyk [55] on block ciphers, such as AES and Serpent. While
many cipher designs (Misty, Kasumi, AES, Camellia) have relied on particular
algebraic primitives for their S-boxes in order to achieve both high security and
high performance (in software and hardware), the apparent simplicity of these
same algebraic structures could provide an avenue for new attacks in the future.
Note that discrete exponentiation and logarithmic S-boxes for MESH cipher can
be derived by using a generator of GF(216 + 1), to represent the multiplication
operation. These S-boxes do not have a ‘simple’ algebraic structure over GF(2).
Preliminary analysis do not detect any algebraic relation for these S-boxes with
algebraic degree below five. In this respect it is an open problem what should
be the correct balance between ‘algebraic complexity’ and ‘algebraic simplicity’
in order to provide high security and sufficiently high speed.

6.1 Topics for Further Research

This section suggests topics that may be of interest for further research on
cryptanalysis of block ciphers:

• No hardware implementations of MESH ciphers are known at the moment,
though estimates could be derived from figures on IDEA [219]. In this
respect, the resistance of MESH cipher to side-channel attacks [60, 127]
has not been investigated either. Perhaps, similar counter-measures as
those described for IDEA in [7] could be sufficient. These are certainly
subjects worth further investigation.

• The MESH ciphers await further cryptanalysis. For instance, the impos-
sible differential analysis of MESH ciphers used exclusive-or as difference
operator. Is it possible to use subtraction, instead ? Notice also that
all differences used have a symmetric pattern of zero/non-zero differences
around the inputs to the MA-boxes. Is it possible to have asymmetrical
impossible differential patterns ?
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• The new linear relations by Yıldırım in Chap. 5, Sect. 5.11.4 for the ¯
operation can provide new linear relations for the multiplication operation
in GF(216 + 1), and further for one-round MESH ciphers. A suggested
new approach is to explore probabilistic relations. The feasibility of linear
attacks using these new linear relations (combining weak-key assumptions
and probabilistic relations) is left as an open problem.

• The preliminary algebraic analysis in Chap. 5, Sect. 5.15 did not find
quadratic, cubic, nor 4th-degree equation for the exponentiation S-boxes
of MESH. An alternative approach is to search for probabilistic algebraic
equations. This can be achieved as follows: after the Gaussian elimination
on the truth table of an S-box, a kind of triangular matrix results.2 It
is possible to apply Gaussian elimination once more, in order to obtain a
(partial) diagonal matrix. This procedure aims to maximize the number
of zero entries per row. The rows with the highest number of zero-entries
form probabilistic algebraic equations. The results for the exponentiation
S-box using g = 3 are: quadratic equations exist with probability 0.753
(= 49366/216); cubic equations exist with probability 0.878 (= 57565/216);
4th-degree equations exist with probability 0.939 (= 61601/216). Still it is
an open question how to solve a system of probabilistic algebraic equations.
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Figure 6.1: AM-boxes.

• In the concluding section of Chap. 5 some suggestions were presented for
several possibilities for the MA-box of the MESH ciphers (Fig. 5.7 and
Table 5.21). Fig. 6.1 further presents the AM-boxes, or Addition-Multi-
plication boxes, that are like mirror images of the MA-boxes: ¢ is the
first operation in an AM-box, alternated with ¯. One clear feature of the
AM-boxes is the resilience against linear attacks since many ¯ operations
do not depend on the subkey values directly. Another advantage is effi-
ciency. If MESH-64 had used the AM-box of Fig. 6.1(a), then it would
have had exactly the same number of operations as IDEA. The AM-box of
Fig. 6.1(b) consists of five ¢ and four ¯, while the MA-box of MESH-96
consists of four ¢ and five ¯. Further assessment of the security of the
AM-boxes is left as an open problem.

2Also called an echelon matrix.
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The Hierocrypt Ciphers

It is only cryptography, but I like it.
Lars R. Knudsen.

Hierocrypt-3 [50] and Hierocrypt-L1 [51] are block ciphers owned by Toshiba
Corp. and submitted as candidate ciphers to the NESSIE [179] and CRYPTREC
[56] Projects.

Hierocrypt-3 (HC-3) is an iterated 128-bit block cipher [52] with a variable
number of rounds, dependent on the key size: for 128-bit keys there are 6 rounds,
for 192-bit keys there are 7 rounds, and for 256-bit keys there are 8 rounds. The
last round is simpler than a full round and is called the output transformation.
HC-3 is a SPN-type cipher and with hierarchical structure: at the highest level,
an HC-3 round (Fig. A.1) consists of the following operations, in order: a layer
of four parallel 32 × 32-bit keyed substitution boxes (the XS-boxes), and a
diffusion layer consisting of a byte-wise linear transformation defined by the
MDSH matrix.

Within each round, a similar structure exists. A 32×32-bit XS-box contains:

• A subkey-mixing layer consisting of the exclusive-or of the 32-bit input
data with four subkey bytes. This layer is called the upper subkey layer.

• A key-independent nonlinear layer composed of four parallel 8 × 8-bit S-
boxes. This layer is called the upper S-box layer.

• A diffusion layer consisting of a byte-wise linear transformation defined
by the MDSL matrix, which is a Maximum Distance Separable (MDS)
matrix [144, 192].

• A second subkey-mixing layer consisting of exclusive-or with four subkey
bytes. This layer is called the lower subkey layer.

• A second key-independent nonlinear layer composed of four parallel 8×8-
bit S-boxes. This layer is referred to as the lower S-box layer.
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Table A.1: π permutation in the S-box of HC-3.

i 1 2 3 4 5 6 7 8
π(i) 3 7 5 8 6 2 4 1

The last round is an output transformation composed of an XS-box layer fol-
lowed by an exclusive-or operation with the last round subkey (or alternatively,
it has a round structure with the MDSH transform substituted by a subkey-
mixing layer). The result is the 128-bit ciphertext block.

The 8× 8-bit S-box of HC-3 is the only non-linear component in the cipher.
The S-box is defined as: s(x) = π(x)247 ⊕ 07x, where the exponentiation is
made in the finite field GF(28)/(z8 + z6 + z5 + z + 1), hereafter denoted with
GF(28), and π(x) is a bit permutation that maps the input xi to xπ(i), 1 ≤ i ≤ 8
(Table A.1).

The MDSL matrix is a linear transformation where all bytes are considered
as elements of GF(28):

MDSL =




C4x 65x C8x 8Bx
8Bx C4x 65x C8x
C8x 8Bx C4x 65x
65x C8x 8Bx C4x


 .

The MDSH matrix is a linear transformation consisting of byte-wise exclusive-
or operations, represented by the matrix product: Y = MDSH ·X.

MDSH =




1 0 1 0 1 0 1 0 1 1 0 1 1 1 1 1
1 1 0 1 1 1 0 1 1 1 1 0 0 1 1 1
1 1 1 0 1 1 1 0 1 1 1 1 0 0 1 1
0 1 0 1 0 1 0 1 1 0 1 0 1 1 1 0
1 1 1 1 1 0 1 0 1 0 1 0 1 1 0 1
0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 0
0 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1
1 1 1 0 0 1 0 1 0 1 0 1 1 0 1 0
1 1 0 1 1 1 1 1 1 0 1 0 1 0 1 0
1 1 1 0 0 1 1 1 1 1 0 1 1 1 0 1
1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 0
1 0 1 0 1 1 1 0 0 1 0 1 0 1 0 1
1 0 1 0 1 1 0 1 1 1 1 1 1 0 1 0
1 1 0 1 1 1 1 0 0 1 1 1 1 1 0 1
1 1 1 0 1 1 1 1 0 0 1 1 1 1 1 0
0 1 0 1 1 0 1 0 1 1 1 0 0 1 0 1




.

Hierocrypt-L1 (HC-L1) is a 64-bit block iterated cipher [53] using a 128-
bit key (Fig. A.2). HC-L1 consists of six rounds, where the last round is the
output transformation. HC-L1 has a hierarchical structure with a high-level
round consisting of
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Figure A.1: Computational graph of the Hierocrypt-3 block cipher.

• A layer of two parallel 32× 32-bit keyed XS-boxes (the same as in HC-3).

• A diffusion layer composed of a byte-wise linear transformation defined by
the MDS ′H matrix.

MDS′H =




1 0 1 0 1 1 1 0
1 1 0 1 1 1 1 1
1 1 1 0 0 1 1 1
0 1 0 1 1 1 0 1
1 1 0 1 0 1 0 1
1 1 0 1 1 0 1 0
1 1 1 1 1 1 0 1
1 0 1 0 1 0 1 1




.

Within each high-level round a similar structure exists. A 32-bit HC-L1
XS-box is identical to an HC-3 XS-box. The output transformation consists of
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Figure A.2: Computational graph of the Hierocrypt-L1 block cipher.

an XS-box layer followed by an exclusive-or with the final 64-bit subkey. The
result is the 64-bit ciphertext block.

Details of the key schedule algorithms of both HC-3 and HC-L1 can be found
in the submission documents [52, 53] to NESSIE.



Appendix B

The IDEA and PES Ciphers

There is a life after cryptography.
Vincent Rijmen.

The Proposed Encryption Standard (PES) is a 64-bit block cipher using a
128-bit key; it consists of eight rounds plus an output transformation (Fig. B.1).
PES was designed by Lai and Massey in 1990 [136]. All transformations in
PES involve one of three group operations on 16-bit words: addition in Z216 ,
represented by ¢, bitwise exclusive-or, denoted by ⊕, and multiplication in
GF(216 + 1) denoted by ¯, where 216 is interpreted as 0. For computing the
product in GF (216 + 1) the following algorithm by Lai [135] can be employed:

Algorithm B.1 (Low-High Algorithm) For any a, b ∈ ZZ∗2n+1, n ∈ {2, 4, 8, 16},
let A = a · b div 2n (the high order half) and B = a · b mod 2n (the low order
half). Then

a¯ b mod (2n + 1) =
{

B −A, if B ≥ A
2n + 1 + B −A, otherwise

where · stands for multiplication in ZZ2n , mod is the remainder and div is the
quotient of division by 2n.

The key schedule of PES processes the initial 128-bit key into fifty-two 16-
bit subkeys (a total of 832 bits). Each round uses six subkey words, and the
output transformation (OT) uses four subkey words. The initial 128-bit key
is partitioned into eight 16-bit words, which are used as the first eight subkey
words. Successive sets of eight subkey words are generated by repeatedly ro-
tating left by 25 bits the 128-bit block containing the previous eight subkeys,
and partitioning the resulting block into eight 16-bit words. Table B.1 shows
the dependency of subkey bits on the master key bits, which are indexed from
0 (most significant bit) to 127 (least significant bit). Bit numbers are consid-
ered modulo 128, that is, in a circular fashion, due to the rotation operation.
One notable feature of IDEA is the use of non-linear operations, such as ¯, to
combine the subkey words with text data.

191
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Figure B.1: Computational graph of the PES block cipher.

Table B.1: Dependency of subkey bits on the master key bits of PES.

i-th round Z
(i)
1 Z

(i)
2 Z

(i)
3 Z

(i)
4 Z

(i)
5 Z

(i)
6

1 0–15 16–31 32–47 48–63 64–79 80–95
2 96–111 112–127 25–40 41–56 57–72 73–88
3 89–104 105–120 121–8 9–24 50–65 66–81
4 82–97 98–113 114–1 2–17 18–33 34–49
5 75–90 91–106 107–122 123–10 11–26 27–42
6 43–58 59–74 100–115 116–3 4–19 20–35
7 36–51 52–67 68–83 84–99 125–12 13–28
8 29–44 45–60 61–76 77–92 93–108 109–124

OT 22–37 38–53 54–69 70–85 — —
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Figure B.2: Computational graph of the IDEA block cipher.

Decryption in PES uses the same framework as in Fig. B.1 for encryption,
but a transformed set of subkey words. Let Z denotes the set of encryption
subkeys, and DK the set of decryption subkeys. Six subkey words are used per
round, thus (DK

(r)
1 , DK

(r)
2 , DK

(r)
3 , DK

(r)
4 ) = (Z(10−r)−1

1 , Z
(10−r)−1

2 , −Z
(10−r)
3 ,

−Z
(10−r)
4 ), for 1 ≤ r ≤ 9, and (DK

(r)
5 , DK

(r)
6 ) = (Z(9−r)

5 , Z
(9−r)
6 ), for 1 ≤ r ≤ 8,

where Z−1 denotes the multiplicative inverse of Z in GF(216 + 1), and −Z
denotes the additive inverse of Z modulo 216.

The International Data Encryption Algorithm (IDEA) is a 64-bit block ci-
pher, using a 128-bit key; it consists of eight rounds plus an output transfor-
mation (Fig. B.2). IDEA was designed by Lai, Massey and Murphy in 1991
[135, 137]. The IDEA cipher was previously known as Improved Proposed En-
cryption Standard (IPES), and it evolved from the PES block cipher. The design
of IDEA is based on the concept of mixing different group operations on 16-bit
sub-blocks, and it uses the same operations as in PES. The main differences
between them are the positioning of operations in a key-mixing half-round and
the swapping of sub-blocks between rounds.
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A round of IDEA consists of a key-mixing and a multiplication-addition
(MA) half-rounds. Let Xi = (Xi

1, Xi
2, Xi

3, Xi
4) denote the input block to the

i-th round of IDEA, where 1 ≤ i ≤ 8, and Xi
j ∈ ZZ16

2 , for 1 ≤ j ≤ 4. Let

Zi = (Z(i)
1 , Z

(i)
2 , Z

(i)
3 , Z

(i)
4 , Z

(i)
5 , Z

(i)
6 ), with Z

(i)
j ∈ ZZ16

2 , for 1 ≤ j ≤ 6 represent
the six subkey words used in the i-th round of IDEA. The first operation in
a round is a subkey mixing that combines Xi with four 16-bit subkey words
Z

(i)
1 , Z

(i)
2 , Z

(i)
3 , Z

(i)
4 in parallel: T i = (T i

1, T
i
2, T

i
3, T

i
4) = (Xi

1 ¯ Z
(i)
1 , Xi

2 ¢ Z
(i)
2 ,

Xi
3 ¢ Z

(i)
3 , Xi

4 ¯ Z
(i)
4 ). Further, the values Xi

5 = T i
1 ⊕ T i

3 and Xi
6 = T i

2 ⊕ T i
4 are

computed as inputs into a multiplication-addition structure, MA-box, together
with Zi

5 and Zi
6. The output of the MA-box is: Xi

8 = (Xi
6 ¢ (Xi

5 ¯Z
(i)
5 ))¯Z

(i)
6

and Xi
7 = (Xi

5 ¯ Z
(i)
5 ) ¢ Xi

8. Next, Xi
7 and Xi

8 are combined with T i resulting
in: Xi+1 = (Xi+1

1 , Xi+1
3 , Xi+1

2 , Xi+1
4 ) = (T i

1⊕Xi
8, T i

2⊕Xi
7, T i

3⊕Xi
8, T i

4⊕Xi
7).

Finally, the two middle words are swapped: (Xi+1
1 , Xi+1

2 , Xi+1
3 , Xi+1

4 ). The
output transformation (OT) is composed of a swap of the two middle input
words and a key-mixing half-round. The key schedule of IDEA is identical to
that of PES.

The decryption operation in IDEA uses the same structure as in Fig. B.2
for encryption but with transformed subkey words. Let DK denote the set
of decryption subkeys corresponding to the set of encryption subkeys Z. Six
subkey words are used per round. Thus (DK

(r)
1 , DK

(r)
2 , DK

(r)
3 , DK

(r)
4 ) =

(Z(10−r)−1

1 , −Z
(10−r)
3 , −Z

(10−r)
2 , Z

(10−r)−1

4 ), for 2 ≤ r ≤ 8; (DK
(r)
1 , DK

(r)
2 ,

DK
(r)
3 , DK

(r)
4 ) = (Z(10−r)−1

1 , −Z
(10−r)
2 , −Z

(10−r)
3 , Z

(10−r)−1

4 ), for r = 1, 9; and
(DK

(r)
5 , DK

(r)
6 ) = (Z(9−r)

5 , Z
(9−r)
6 ), for 1 ≤ r ≤ 8, where Z−1 denotes the

multiplicative inverse of Z in GF(216 + 1), and −Z denotes the additive inverse
of Z modulo 216.

Both IDEA and PES allow scaled-down versions with 32-bit blocks, denoted
IDEA(32) and PES(32); with 16-bit blocks, denoted IDEA(16) and PES(16),
and with 8-bit blocks, denoted IDEA(8) and PES(8), by restricting the opera-
tions to n-bit operands, n ∈ {8, 4, 2}, with addition in ZZn

2 , and multiplication
in GF (2n + 1), 2n + 1 a prime number.



Appendix C

The SAFER Family of
Block Ciphers

Look at the content, not the bottle.
The Talmud.

SAFER K-64 (Secure and Fast Encryption Routine with a Key of length
64 bits) is an iterated cipher with a 64-bit block, and six rounds plus an out-
put transformation (OT), designed by Massey [146] as the first member of the
SAFER cipher family. A summary of the main parameters for these ciphers is
listed in Table C.1. SAFER K-64 is a byte-oriented cipher which means that
both encryption and decryption execute only byte-wise operations. In an en-
cryption round of SAFER K-64, the input block B is first split into eight bytes:
B = (b1, b2, b3, b4, b5, b6, b7, b8), bj ∈ ZZ256, 1 ≤ j ≤ 8. The first round subkey
K2r is added to the bytes bj as follows

Y = (b1⊕K1
2r, b2¢K2

2r, b3¢K3
2r, b4⊕K4

2r, b5⊕K5
2r, b6¢K6

2r, b7¢K7
2r, b8⊕K8

2r) ,

where ¢ denotes addition modulo 256 and ⊕ denotes exclusive-or. Each byte
of Y = (y1, y2, y3, y4, y5, y6, y7, y8) is input to an S-box as Z = (X(y1), L(y2),
L(y3), X(y4), X(y5), L(y6), L(y7), X(y8)), where X is an S-box based on discrete
eXponentiation, and L an S-box based on discrete Logarithm. This S-box layer
is referred to as the non-linear or NL layer. Subsequently, Z = (z1, z2, z3, z4,
z5, z6, z7, z8) is combined with the second round subkey K2r+1 as

T = (z1 ¢ K1
2r+1, z2 ⊕K2

2r+1, z3 ⊕K3
2r+1, z4 ¢ K4

2r+1,

z5 ¢ K5
2r+1, z6 ⊕K6

2r+1, z7 ⊕K7
2r+1, z8 ¢ K8

2r+1) .

Finally, the bytes of T are input to a linear transformation called Pseudo-
Hadamard Transform or the PHT layer. The alternating-XOR/ADD layer of
input data with the first subkey bytes, together with the NL layer form the
NL half-round. Similarly, the combination of the alternating-ADD/XOR layer

195
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Table C.1: Main parameters of the SAFER block ciphers.

Cipher Block Size Key Size #Rounds Source
(bits) (bits) (except OT)

SAFER-32 32 64 8 [120]
SAFER K-64 64 64 6 (max. 10) [146]
SAFER K-128 64 128 10 (max. 12) [149]
SAFER SK-40 64 40 5 [147]
SAFER SK-64 64 64 8 [148]
SAFER SK-128 64 128 10 (max. 12) [148]
SAFER+ 128 128 8 [150]

128 192 12 [150]
128 256 16 [150]

SAFER++ 64 128 8 [151]
128 128 7 [151]
128 256 10 [151]

of intermediate data with the second subkey, and the PHT layer form the PHT
half-round.

The S-boxes of SAFER ciphers are defined: X(a) = (45a mod 257) mod 256
(called X-box), and its inverse L(a) = log45(a) mod 257 (called L-box) for a 6= 0,
and L(0) = 128.

The PHT layer consists of a linear transformation. Denoting the input to a
PHT layer by T = (t1, t2, t3, t4, t5, t6, t7, t8) and its output by U = (u1, u2,
u3, u4, u5, u6, u7, u8), where ti, ui ∈ ZZ256, 1 ≤ i ≤ 8, this transformation can
be described by U = T ·M , where M is the PHT matrix.

M =

0BBBBBBBBB@

8 4 4 2 4 2 2 1
4 2 4 2 2 1 2 1
4 2 2 1 4 2 2 1
2 1 2 1 2 1 2 1
4 4 2 2 2 2 1 1
2 2 2 2 1 1 1 1
2 2 1 1 2 2 1 1
1 1 1 1 1 1 1 1

1CCCCCCCCCA
, M−1 =

0BBBBBBBBB@

1 -1 -1 1 -1 1 1 -1
-1 1 1 -1 2 -2 -2 2
-1 2 1 -2 1 -2 -1 2
1 -2 -1 2 -2 4 2 -4

-1 1 2 -2 1 -1 -2 2
1 -1 -2 2 -2 2 4 -4
1 -2 -2 4 -1 2 2 -4

-1 2 2 -4 2 -4 -4 8

1CCCCCCCCCA
.

Let U = (u1, u2, u3, u4, u5, u6, u7, u8) be the output after r rounds.
There is an output transformation which mixes U with the last subkey, giving
the ciphertext:

C = U + K2r+1 = (u1 ⊕K1
2r+1, u2 ¢ K2

2r+1, u3 ¢ K3
2r+1, u4 ⊕K4

2r+1,

u5 ⊕K5
2r+1, u6 ¢ K6

2r+1, u7 ¢ K7
2r+1, u8 ⊕K8

2r+1) .

The encryption and decryption structures are not symmetric as in a Feistel
cipher. Decryption involves the application of the inverse of each round com-
ponent, and the reverse order of the subkeys. The inverse PHT (IPHT) layer is
composed of modular subtraction in ZZ256, denoted ¯. Analogous to the PHT
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matrix, if T and U are the input and output of the IPHT, respectively, then
T = U ·M−1, where M−1 is the IPHT matrix.

The key schedule of SAFER K-64 uses constant byte values called key biases,
denoted Bi, 2 ≤ i ≤ 2r − 1. Each Bi is composed of eight bytes bi,j :

bi,j = (45459i+j mod 257 mod 257) mod 256 = X(X(9i + j)),

for 1 ≤ j ≤ 8. The key biases are intended to randomize the keys, and avoid
weak keys like in DES.

Algorithm C.1 (SAFER K-64 Key Schedule)

• the master key K is used as the first round subkey K1.

• for the i-th round subkey, Ki, 2 ≤ i ≤ 2r + 1:

– initially, Ki = Ki−1

– rotate left each byte of Ki by 3 bits

– add byte-wise the key bias Bi to Ki.

SAFER K-32 has been described by Knudsen in [120]. SAFER SK-64 differs
from SAFER K-64 only in the key schedule (Fig. C.1), and SAFER SK-128
uses a 128-bit key instead (Fig. C.2). SAFER SK-40 can accommodate a 40-bit
master key variant of SAFER K-64. The key schedule of SAFER SK-40 inherits
the same design of other SAFER SK members, with the additional feature that
four key bytes are derived from the 40-bit keys K = (K1, K2, K3, K4, K5):
K6 = K1 + K3 + 129; K7 = K1 + K4 + K5 + 66; K8 = K2 + K3 + K5 + 36;
K9 = K2 + K4 + 24.

C.1 SAFER+

SAFER+ is an iterated byte-oriented block cipher, using 128-bit blocks, and
variable key size. The cipher has r = 8 rounds for 128-bit keys, r = 12 rounds
for 192-bit keys and r = 16 rounds for 256-bit keys. For all key sizes there
is an output transformation that consists of a key-mixing layer with a 128-bit
subkey SAFER+ was designed by Massey, Khachatrian and Kuregian for the
AES Development Process [150].

The structure of a SAFER+ round contains four layers (Fig. C.3). First,
there is a key-mixing layer consisting of the byte-wise combination of the first
round subkey with the input block alternately via XOR and ADDition modulo
256. The second layer consists of the parallel, alternate application of X and L
S-boxes. The third layer is another byte-wise key-mixing layer with the second
round subkey, alternately via ADDition and XOR. The last layer is a linear
transformation represented by a diffusion matrix denoted M+.
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Figure C.1: Computational graph of the key schedule of SAFER SK-64.

M+ =

0BBBBBBBBBBBBBBBBBBBBBBBBB@

2 2 1 1 16 8 2 1 4 2 4 2 1 1 4 4
1 1 1 1 8 4 2 1 2 1 4 2 1 1 2 2
1 1 4 4 2 1 4 2 4 2 16 8 2 2 1 1
1 1 2 2 2 1 2 1 4 2 8 4 1 1 1 1
4 4 2 1 4 2 4 2 16 8 1 1 1 1 2 2
2 2 2 1 2 1 4 2 8 4 1 1 1 1 1 1
1 1 4 2 4 2 16 8 2 1 2 2 4 4 1 1
1 1 2 1 4 2 8 4 2 1 1 1 2 2 1 1
2 1 16 8 1 1 2 2 1 1 4 4 4 2 4 2
2 1 8 4 1 1 1 1 1 1 2 2 4 2 2 1
4 2 4 2 4 4 1 1 2 2 1 1 16 8 2 1
2 1 4 2 2 2 1 1 1 1 1 1 8 4 2 1
4 2 2 2 1 1 4 4 1 1 4 2 2 1 16 8
4 2 1 1 1 1 2 2 1 1 2 1 2 1 8 4
16 8 1 1 2 2 1 1 4 4 2 1 4 2 4 2
8 4 1 1 1 1 1 1 2 2 2 1 2 1 4 2

1CCCCCCCCCCCCCCCCCCCCCCCCCA

.

Decryption in SAFER+ requires the inverse operation of each cipher compo-
nent, and the reverse order of the subkeys. For the Addition operation, modular
subtraction in ZZ256 is used. For the inverse linear transformation, if X is its
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Figure C.2: Computational graph of the key schedule of SAFER SK-128.
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Figure C.3: First round of SAFER+.
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128-bit input, then the output is Y = X · M−1
+ , where M−1

+ is the inverse
SAFER+ diffusion matrix:

M−1
+ =

0BBBBBBBBBBBBBBBBBBBBBBBBB@

2 -2 1 -2 1 -1 4 -8 2 -4 1 -1 1 -2 1 -1
-4 4 -2 4 -2 2 -8 16 -2 4 -1 1 -1 2 -1 1
1 -2 1 -1 2 -4 1 -1 1 -1 1 -2 2 -2 4 -8
-2 4 -2 2 -2 4 -1 1 -1 1 -1 2 -4 4 -8 16
1 -1 2 -4 1 -1 1 -2 1 -2 1 -1 4 -8 2 -2
-1 1 -2 4 -1 1 -1 2 -2 4 -2 2 -8 16 -4 4
2 -4 1 -1 1 -2 1 -1 2 -2 4 -8 1 -1 1 -2
-2 4 -1 1 -1 2 -1 1 -4 4 -8 16 -2 2 -2 4
1 -1 1 -2 1 -1 2 -4 4 -8 2 -2 1 -2 1 -1
-1 1 -1 2 -1 1 -2 4 -8 16 -4 4 -2 4 -2 2
1 -2 1 -1 4 -8 2 -2 1 -1 1 -2 1 -1 2 -4
-1 2 -1 1 -8 16 -4 4 -2 2 -2 4 -1 1 -2 4
4 -8 2 -2 1 -2 1 -1 1 -2 1 -1 2 -4 1 -1
-8 16 -4 4 -2 4 -2 2 -1 2 -1 1 -2 4 -1 1
1 -1 4 -8 2 -2 1 -2 1 -1 2 -4 1 -1 1 -2
-2 2 -8 16 -4 4 -2 4 -1 1 -2 4 -1 1 -1 2

1CCCCCCCCCCCCCCCCCCCCCCCCCA

.

SAFER+ allows scaled-down cipher versions, such as in SAFER K-64, by
using exponentiation and logarithms in GF(22 + 1), and GF(24 + 1) as well
as enlarged versions with operations in GF(216 + 1), by selecting appropriate
generators in each finite field (Sect. 2.6.2, Chap. 2).

The key schedule of SAFER+ generates 2r+1 128-bit subkeys: two subkeys
per round, plus one last subkey for the output transformation. There are also
2r + 1 128-bit key bias vectors Bi. Let Bi,j denote the j-th byte of the i-th key
bias, 2 ≤ i ≤ 2r+1. The key bias value B1 is not used. The other key bias bytes
are computed as: Bi,j = (454517·i+j mod 257 mod 257) mod 256 for 2 ≤ i ≤ 17,
and 1 ≤ j ≤ 16. For 18 ≤ i ≤ 33, the key bias values needed for 192- and
256-bit keys are defined as: Bi,j = (4517·i+j mod 257) mod 256, 1 ≤ j ≤ 16.

Fig. C.4 shows the tweaked key schedule of SAFER+.

C.2 SAFER++

SAFER++ is an iterated byte-oriented block cipher using 128-bit blocks, and
variable key size. The cipher has r = 7 rounds for 128-bit keys, and r = 10
rounds for 256-bit keys. For all key sizes there is an output transformation
consisting of a key-mixing layer with a 128-bit subkey. SAFER++ was designed
by Massey, Khachatrian and Kuregian [151] for the NESSIE Project.

The structure of a SAFER++ round consists of four layers, like in SAFER+.
The main difference is in the linear transformation in a SAFER++ round. Given
an input X = (x1, . . ., x16) to the linear transformation, the output is given
by Y = (y1, . . ., y16), where Y = X ·M++, and M++ is the cipher’s diffusion
matrix.
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Figure C.4: Tweaked key schedule of SAFER+.
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M++ =

0BBBBBBBBBBBBBBBBBBBBBBBBB@

1 2 1 1 1 1 1 1 4 2 2 2 1 1 2 1
2 1 1 1 1 1 2 1 1 1 1 1 2 4 2 2
2 2 4 2 2 1 1 1 1 2 1 1 1 1 1 1
1 1 1 1 1 2 1 1 1 1 2 1 2 1 1 1
4 2 2 2 1 1 2 1 1 1 1 1 1 2 1 1
1 1 2 1 2 1 1 1 2 4 2 2 1 1 1 1
1 1 1 1 1 2 1 1 2 2 4 2 2 1 1 1
1 2 1 1 1 1 1 1 2 1 1 1 1 1 2 1
1 1 2 1 4 2 2 2 1 2 1 1 1 1 1 1
1 1 1 1 2 4 2 2 1 1 2 1 2 1 1 1
1 2 1 1 1 1 1 1 2 1 1 1 2 2 4 2
2 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1
1 1 1 1 1 2 1 1 1 1 2 1 4 2 2 2
2 4 2 2 1 1 1 1 2 1 1 1 1 1 2 1
2 1 1 1 2 2 4 2 1 1 1 1 1 2 1 1
1 1 2 1 2 1 1 1 1 2 1 1 1 1 1 1

1CCCCCCCCCCCCCCCCCCCCCCCCCA
Decryption uses the inverse linear transformation with the matrix M−1

++. The
result is Y = XT ·M−1

++, where:

M−1
++ =

0BBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 -4 1 0 1 0 0 1 0 -1 1 0 0 0
0 0 0 -4 0 0 1 -1 0 1 0 0 1 1 0 0
0 0 1 -4 0 0 1 0 0 1 0 0 1 0 0 -1
0 0 -1 16 -1 0 -4 1 0 -4 0 1 -4 -1 0 1
1 0 0 0 0 0 0 -4 1 0 1 0 0 1 0 -1
1 0 0 -1 0 0 0 -4 0 1 1 0 0 1 0 0
1 0 0 0 0 0 0 -4 0 0 1 -1 0 1 1 0

-4 0 0 1 0 0 0 16 -1 -1 -4 1 0 -4 -1 1
1 1 0 0 1 0 0 -1 0 0 0 -4 0 0 1 0
0 1 0 0 1 1 0 0 0 0 0 -4 0 0 1 -1
0 1 0 -1 1 0 1 0 0 0 0 -4 0 0 1 0

-1 -4 0 1 -4 -1 -1 1 0 0 0 16 0 0 -4 1
0 0 1 -1 0 1 0 0 1 0 0 0 1 0 0 -4
0 1 1 0 0 1 0 0 1 0 0 -1 0 0 0 -4
0 0 1 0 0 1 0 -1 1 0 1 0 0 0 0 -4
0 -1 -4 1 0 -4 0 1 -4 0 -1 1 -1 0 0 16

1CCCCCCCCCCCCCCCCCCCCCCCCCA
One round of SAFER++ is depicted in Fig. C.5.
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Figure C.5: One round of SAFER++.



Appendix D

The Skipjack Block Cipher

Skipjack is an iterated 64-bit block cipher, using an 80-bit key [45, 183] developed
by the National Security Agency (NSA) for the Clipper chip and Fortezza PC
card [182]. Skipjack is an unbalanced Feistel Network cipher [204] with 32
rounds of two types called Rule-A and Rule-B.

Let W i = (wi
1, w

i
2, w

i
3, w

i
4) be the input block to the i-th round, 0 ≤ i ≤ 31.

The round output block W i+1, according to each rule, is given by Table D.1.
The plaintext block is denoted by the index i = 0 and the ciphertext block
by i = 32. The main component of each kind of round is a non-linear keyed

Table D.1: Description of Rule-A- and Rule-B- rounds and their inverses.

Rule-A (0 ≤ i ≤ 7; 16 ≤ i ≤ 23) Rule-B (8 ≤ i ≤ 15; 24 ≤ i ≤ 31)

wi+1
1 = Gi(wi

1)⊕ wi
4 ⊕ (i + 1) wi+1

1 = wi
4

wi+1
2 = Gi(wi

1) wi+1
2 = Gi(wi

1)
wi+1

3 = wi
2 wi+1

3 = wi
1 ⊕ wi

2 ⊕ (i + 1)
wi+1

4 = wi
3 wi+1

4 = wi
3

Rule A−1 (8 ≤ i ≤ 15; 24 ≤ i ≤ 31) Rule B−1 (0 ≤ i ≤ 7; 16 ≤ i ≤ 23)

wi−1
1 = G−i(wi

2) wi−1
1 = G−i(wi

2)
wi−1

2 = wi
3 wi−1

2 = G−i(wi
2)⊕ wi

3 ⊕ i

wi−1
3 = wi

4 wi−1
3 = wi

4

wi−1
4 = wi

1 ⊕ wi
2 ⊕ i wi−1

4 = wi
1

permutation Gi, where 0 ≤ i ≤ 31 is the round number.
For encryption, the rounds are ordered as eight Rule-A rounds, followed by

eight Rule-B rounds, followed again by eight Rule-A rounds and finally eight more
Rule-B rounds. The untwisted network of Skipjack for encryption is presented
in Fig. D.1.
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Figure D.1: Computational graph of Skipjack (untwisted): (a) first 16 rounds,
(b) last 16 rounds.
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Figure D.2: Feistel structure of: (a) permutation Gi and (b) its inverse G−i

A fixed counter value, i + 1, is exclusive-ored at round i, for 0 ≤ i ≤ 31. It
was observed by Biham et al. [17] that their presence protects against related
key attacks. The main component of a round is the Gi function. The function
Gi : ZZ16

2 → ZZ16
2 consists of a 4-round Feistel Network. Each internal round of Gi

uses a fixed permutation called F-table. Let the concatenation of a pair of bytes
g1||g2 be an input to Gi, and (k4i mod 10, k4i+1 mod 10, k4i+2 mod 10, k4i+3 mod 10)
the subkey bytes used in the i-th round, for 0 ≤ i ≤ 31. The four internal
rounds of Gi(g1||g2) compute:

g3 = F(g2 ⊕ k4i mod 10)⊕ g1 ,

g4 = F(g3 ⊕ k4i+1 mod 10)⊕ g2 ,

g5 = F(g4 ⊕ k4i+2 mod 10)⊕ g3 ,

g6 = F(g5 ⊕ k4i+3 mod 10)⊕ g4 .

The result is Gi(g1||g2) = g5||g6. Similarly, G−i(g5||g6) = g1||g2. Both schemes
are depicted in Fig. D.2. The F-table is a fixed 8-bit permutation; it is the
only non-linear operation in the cipher. F has no fixpoint (F[x] = x) neither
complemented fixpoint (F[x] = x), but the keyed F-table Fk[x] = F[x ⊕ k],
for a fixed subkey byte k, has exactly one fixpoint for each possible value of k.
Consequently, the Gi function has also, for each round subkey1 (k4i, k4i+1, k4i+2,

1In order to simplify notation, the reduction of the subkey index modulo 10 will be omitted.
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k4i+3), exactly one fixpoint given by (k4i+3⊕F−1[k4i⊕k4i+2], k4i⊕F−1[k4i+1⊕
k4i+3]).

Decryption in Skipjack consists of iterating the ciphertext through eight Rule
B−1 rounds, followed by eight Rule A−1 rounds, followed by eight more Rule B−1

rounds, and finally eight Rule A−1 rounds, with the subkeys in reverse order.
Although dissimilar to encryption, Biham observed in [17] that decryption can
be accomplished using the same structure as for encryption (Fig. D.3 shows
the untwisted decryption network for Skipjack) with some appropriate byte re-
ordering. If the plaintext block is denoted P = (p0, p1, p2, p3, p4, p5, p6, p7), the
user-key by K = (k0, k1, k2, k3, k4, k5, k6, k7, k8, k9) and the corresponding
ciphertext by C = (c0, c1, c2, c3, c4, c5, c6, c7), then decryption consists in: (i)
reversing the order of the round counters; (ii) encrypting the reordered cipher-
text C∗ = (c3, c2, c1, c0, c7, c6, c5, c4), under the user-key K∗ = (k7, k6, k5, k4,
k3, k2, k1, k0, k9, k8), giving the plaintext P ∗ = (p3, p2, p1, p0, p7, p6, p5, p4).

The key schedule of Skipjack uses four consecutive user-key bytes per round,
in a cyclical order. Let K = (k0, k1, k2, k3, k4, k5, k6, k7, k8, k9) be the 80-bit
key. Then, the i-th round subkey, for 0 ≤ i ≤ 31, is given by (k4i, k4i+1, k4i+2,
k4i+3). Therefore, the same set of four key bytes is repeated every five rounds.
Moreover, the key bytes which enter the Gi function can be distinguished as odd
or even key bytes. If the internal rounds of the Gi permutation are numbered
from 0 to 3, then the even-numbered key bytes {k4i, k4i+2} are always input to
the even-numbered rounds, while the odd-numbered key bytes {k4i+1, k4i+3}
are always input to the odd-numbered rounds.
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Figure D.3: Untwisted decryption network of Skipjack: (a) first 16 inverse
rounds, and (b) last 16 inverse rounds.
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Appendix E

Protocol Weaknesses

This section presents a contribution, based on [145], on the analysis of protocols
for updating the parameters of a threshold scheme.

Threshold schemes are adaptable cryptographic primitives that distribute
trust in secret data by requiring k out n entities to cooperate before the data
can be recovered. A (k, n)-threshold scheme is a protocol for the protection
of a secret among a group of n shareholders in such a way that at least k of
the shareholders must cooperate before the secret can be reconstructed. Each
shareholder is issued in advance with an amount of private information, which
forms their share of the secret.

An important security management issue relating to threshold schemes is the
problem of updating the parameters of a threshold scheme. Once the threshold
scheme has been initialized it may be desirable to alter the parameters of the
scheme. There are four types of parameter update. The threshold parameter
k may increase or decrease in relation to changes in security policy, and the
shareholder parameter n may increase or decrease in relation to new shareholders
being enrolled into the scheme or old shareholders being disenrolled from the
scheme. In the bulk of applications, the shares of a threshold scheme are issued
to the shareholders by a trusted third party, a dealer, by means of a costly
secure channel. It is assumed that this is generally a one-time process and
that use of these channels for further dealer-to-shareholder communication is
not possible. Thus the only method by which the dealer can communicate with
existing shareholders is by public broadcast messages.

E.1 Threshold Schemes

Let H = {h1, . . . , hn} be a set of shareholders. To each shareholder h a finite
set Sh is associated. Besides, the secret s is associated to a set S. A (k, n)-
threshold scheme is a collection of distribution rules, each of which can be
thought of as a tuple (x1, . . . , xn, xs), where xi ∈ Shi , and xs ∈ S. The threshold
scheme is initiated by the dealer selecting a secret xs ∈ S, randomly selecting a

211
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distribution rule r = (x1, . . . , xn, xs), and then issuing share xi to participant hi.
Although the entire collection of distribution rules is publicly known, only the
dealer knows the secret and the particular distribution rule r used to determine
the shares. The properties of a (k, n)-threshold scheme are that:

(1) given shares held by a set of at least k shareholders, the secret xs can be
uniquely determined;

(2) given shares held by a set of less than k shareholders, no information is
leaked about the secret xs.

Threshold schemes that possess properties (1) and (2)are called perfect. If prop-
erty (2) does not hold, and there is some information leakage concerning the se-
cret, the scheme is called non-perfect. For a non-perfect (k, n)-threshold scheme
to be practical it is important to quantify the amount of leakage precisely. In
particular, it is important to ensure that despite the leakage it is still sufficiently
intractable for less than k shareholders to determine the secret.

In particular, the proposed protocols in [217] for threshold increase and dis-
enrollment in which no such quantifying is provided, are shown to leak sufficient
information for k − 1 shareholders to determine the secret uniquely.

E.2 Shamir’s Threshold Scheme

The most well-known perfect (k, n)-threshold scheme is Shamir’s Threshold
Scheme [208]: for each h ∈ H, Sh = S = ZZq, where q > n is prime. To initialize
Shamir’s scheme the dealer first publicly selects n distinct non-zero elements
xi ∈ ZZq, 1 ≤ i ≤ n. The dealer then selects a secret a0 and randomly selects
values aj , 1 ≤ j ≤ k−1. These values define a polynomial f(x) =

∑k−1
j=0 aj ·xj of

degree (at most) k−1. The dealer distributes the share f(xi) to shareholder hi,
1 ≤ i ≤ n. Any k shareholders can now reconstruct f by Lagrange interpolation
and hence recover a0. Further, up to k − 1 shareholders cannot determine any
information about a0 and so both threshold scheme properties are satisfied. The
corresponding publicly known collection of distribution rules is the collection of
qk distinct (n + 1)-tuples r = (f(0), f(x1), . . . , f(xn)), where each distribution
rule is indexed by (a0, a1, . . . , ak−1). A variant of Shamir’s threshold scheme,
used in [217], differs only in that the values xi are also kept private, resulting
in each shareholder having a larger share of the form (xi, f(xi)). This variant,
which is also perfect, is called modified Shamir Threshold Scheme.

In [217] the following protocol was proposed for increasing the threshold
parameter of a (k, n)-threshold scheme. It is assumed that a modified Shamir
(k, n) scheme has already been established and that this scheme needs to be
updated to a (k′, n) scheme with k′ > k.

Protocol E.1 (Protocol 1 [217]) Let M be a modified Shamir (k, n)-threshold
scheme defined over ZZq, with secret a0, and polynomial coefficients aj, 1 ≤ j ≤
k − 1. Let f(x) =

∑k−1
i=0 ai · xi. To update M to any (k′, n)-threshold access

structure with k′ > k the dealer conducts the following procedure:
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(i) choose a new secret b0 and let bj, 1 ≤ j ≤ n be the coefficients of the
unique polynomial g of degree n over ZZq through the points (0, b0) and
(xj , f(xj)), 1 ≤ j ≤ n.

(ii) broadcast the coefficients bj, k′ ≤ j ≤ n.

Protocol 1 indeed allows k′ shareholders to reconstruct the new secret b0, since
step (i) effectively converts the existing shares into shares of an (n + 1, n + 1)-
threshold scheme (all n shares plus one extra point on the polynomial are needed
to reconstruct the secret), and step (ii) is shown in [217] to reduce the threshold
parameter to k′. Protocol 1 uses a modified Shamir scheme because otherwise,
if the values xi are public, k shareholders can reconstruct f . They can hence
obtain f(xi), 1 ≤ i ≤ n and then, since f(xi) = g(xi), 1 ≤ i ≤ n they can use
the information broadcast in step (ii) to obtain b0. We show that protection of
the values xi is not sufficient in general to prevent k shareholders from obtaining
b0, and hence in Protocol 1 the threshold parameter has not necessarily been
increased.

Consider an attempt to reconstruct the secret b0 by k shareholders, who
collectively know (xi, f(xi)), 1 ≤ i ≤ k. As observed, they thus collectively
know f and hence all the values g(xi), 1 ≤ i ≤ n. They do not know xi,
k + 1 ≤ i ≤ n and so cannot use standard interpolation methods to recover g,
and hence b0. So, how much knowledge do they have? Let h(x) = g(x)− f(x).
Thus h(x) is a polynomial of degree at most n with h(xi) = 0, 1 ≤ i ≤ n. Since
there can be at most n values x for which h(x) = 0, the distinct values xi are
thus the only values for which h(x) = 0. In particular, this means that h(0) 6= 0,
and thus it follows that b0 6= a0. The attackers can now try to determine h(x)
by searching for candidate polynomials of degree at most n that have n distinct
nonzero zeroes, k of which they already know. Candidate polynomials have the
form

λ(x− x1)(x− x2) . . . (x− xk)(x− α1) . . . (x− αn−k) ,

where λ ∈ ZZq and αi ∈ ZZq\{0, x1, . . . , xk}. The probability p that a random
polynomial has this form is the number of ways of choosing λ and αi, 1 ≤ i ≤
n− k, divided by the total number of polynomials of degree n over ZZq. Hence

p =
(

q − k + 1
n− k

)
/qn . (E.1)

The attackers also have knowledge of the parameters bi, k′ ≤ i ≤ n. We ap-
proximate the expected number of candidate polynomials h(x) that the attackers
will find by searching the qk′ possible choices for the remaining parameters bi,
0 ≤ i ≤ k′ − 1. We make the assumption that each choice of these parameters
corresponds to testing a random polynomial h(x), and that the chance of h(x)
having the desired properties is independent of the choice of b0. For simplicity
we do not exploit the extra information that b0 6= a0. Letting E(α) be the
expected number of candidate polynomials h(x) with constant term α, from
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equation E.1 we have

E(α) ≈ qk′p/q =
(

q − k − 1
n− k

)
/qn−k′+1 . (E.2)

For the resulting (k′, n)-threshold scheme to be close to perfect it is necessary
that E(α) ≥ 1 for almost all α ∈ ZZq (the new scheme must be non-perfect since
E(a0) = 0). However, if E(α) < 1 on average the attackers know that the
secret is one of approximately q · E(α) < q values in ZZq, and if E(α) ≤ 1/q
the attackers can probably uniquely determine b0 since the actual polynomial
h(x) = g(x) − f(x) is likely to be the only candidate polynomial found by the
search. Since (

q − k − 1
n− k

)
<

qn−k

(n− k)!
, (E.3)

an easily derived condition for guaranteeing that E(α) < 1 is that qk′−k−1 <
(n − k)!. It thus follows that, for example, using Protocol 1 to increase the
threshold parameter from k to k + 1 will almost always result in k shareholders
being able to uniquely determine the new secret b0.

We implemented an attack on Protocol 1 that tested all possible candidate
polynomials to find the correct h(x). The approximation of equation E.2 appears
to be fairly accurate and a sample set of results are shown in Table E.1. The
results shown are for the Shamir (2,6)-threshold scheme over ZZ19 with a0 = 1,
a1 = 2, x1 = 1, x2 = 2 and b0 = 2.

Interpreting Table E.1, each row shows the results for a different thresh-
old parameter increase. Column E(α) shows the value E(α) computed from
equation E.2, and the remaining columns show the result of a computer search
for the number of candidate polynomials with the corresponding value for b0,
with column a(α) indicating the average count. In each case, the true polyno-
mial h(x) is one of those computed in the column indexed by b0 = 2. Both
the predicted and actual results show that for the (2,6)-threshold scheme under
consideration, Protocol 1 fails to increase the threshold if k′ = 3 or k′ = 4. For
k′ = 3 two attackers can uniquely determine the new secret b0. For k′ = 4 they
have only three possible choices, and will guess the correct secret with probabil-
ity 1/2. For k′ = 5 the protocol works quite well, but if the attackers adopt the
strategy of guessing one of the secrets with the highest count they will succeed
with probability 1/3. For k′ = 6 the protocol seems to work reasonably well.
Similar results were obtained for a number of other sets of data, indicating that
Protocol 1 offers satisfactory security for restricted sets of parameters, and must
be applied with considerable caution.

E.3 A Proposed Protocol for Disenrolling Share-
holders

In [217] the following protocol was proposed for disenrollment of shareholders
from a (k, n)-threshold scheme. It is assumed that a modified Shamir (k, n)-
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Table E.1: Results of four computer searches for h(x) relating to increasing the
parameter of (2,6)-threshold scheme over ZZ19 to indicated values k′ = 3, 4, 5, 6,
respectively.

b0
k′ E(α) a(α) 0 1 2 3 4 5 6 7 8 9
3 0.01 0.05 0 0 1 0 0 0 0 0 0 0
4 0.26 0.21 0 0 2 1 0 0 0 0 1 0
5 5.04 5.00 5 0 7 6 3 5 5 5 5 5
6 95.79 95.84 103 0 99 102 103 100 99 100 99 102

b0
k′ E(α) a(α) 10 11 12 13 14 15 16 17 18
3 0.01 0.05 0 0 0 0 0 0 0 0 0
4 0.26 0.21 0 0 0 0 0 0 0 0 0
5 5.04 5.00 7 7 5 6 5 6 5 4 4
6 95.79 95.84 100 103 100 102 103 103 104 99 100

Note: correct value is b0 = 2.

threshold scheme has already been established and that this scheme needs to be
updated to a (k, n′)-threshold scheme with n′ < n.

Protocol E.2 (Protocol 2 [217]) Let M be a modified Shamir (k, n)-threshold
scheme defined over ZZq, with secret a0, polynomial coefficients aj, 1 ≤ j ≤ k−1.
Let f(x) =

∑k−1
i=0 ai · xi. To update M to any (k, n′)-threshold access structure

with n′ < n the dealer conducts the following procedure:

• choose values yn′+1, . . . , yn from ZZq and let the n− n′ shareholders being
disenrolled be associated with values xn′+1, . . . , xn.

• choose a new secret b0 and let bj, 1 ≤ j ≤ n be the coefficients of the unique
polynomial g of degree n over ZZq through the points (0, b0), (xi, f(xi)),
1 ≤ i ≤ n′, and (xi, yi), n′ + 1 ≤ i ≤ n.

• broadcast the coefficients bj, k ≤ j ≤ n.

Protocol 2 allows k shareholders to reconstruct the new secret b0, but similar
concerns to that of Sect.E.2 exist regarding the security of the protocol. Con-
sider here the case of one shareholder being disenrolled and k shareholders, that
include the disenrolled one, trying to reconstruct the secret. These shareholders
perform an attack rather similar to that of Sect.E.2, by considering candidate
polynomials h(x) = g(x)−f(x). We associate the disenrolled shareholders with
xk. Since f(xk) 6= g(xk), the attackers this time look for candidate polynomials
of degree n that have at least n−1 distinct non-zero zeroes, k−1 of which they
already know: the values xi, 1 ≤ i ≤ k − 1. Candidate polynomials thus have
the form

λ(x− x1)(x− x2) . . . (x− xk−1)(x− α1)(x− α2) . . . (x− αn−k)(x− αn−k+1) ,
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where λ ∈ ZZq, αi ∈ ZZq\{0, x1 . . . , xk}, 1 ≤ i ≤ n − k, and αn−k+1 ∈ ZZq. In
this case the probability p′ that a random polynomial has this form is

p′ = q(q − 1)
(

q − k

n− k

)
/qn+1 . (E.4)

Letting E(α) be the expected number of candidate polynomials h(x) with
constant term α, this time we have

E(α) ≈ qkp′/q =
(

q − k

n− k

)
/qn−k . (E.5)

Reusing equation E.3,

E(α) ≈
(

q − k

n− k

)
/qn−k <

1
(n− k)!

, (E.6)

which, following the discussion in Sect. E.2, raises serious concerns about the
security of Protocol 2.
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crete Results. In Ç.K. Koç, D. Naccache, and C. Paar, editors, Workshop
on Cryptographic Hardware and Embedded Systems, CHES 2001, LNCS
2162, pages 251–261, 2001.

[80] D.G. Georgoudis, D. Leroux, and B.S. Chaves. FROG. 1st AES Confer-
ence, California, USA, Aug 1998. http://csrc.nist.gov/encryption/aes/.

[81] H. Gilbert, M. Girault, P. Hoogvorst, F. Noilhan, T. Pornin,
G. Poupard, J. Stern, and S. Vaudenay. Decorrelated Fast Cipher:
an AES candidate. 1st AES Conference, California, USA, Aug 1998.
http://csrc.nist.gov/encryption/aes/.

[82] H. Gilbert and M. Minier. A Collision Attack on Seven Rounds
of Rijndael. 3rd AES Conference, New York, USA, 2000.
http://csrc.nist.gov/encryption/aes/.

[83] V.D. Gligor and P. Donescu. Fast Encryption and Authentica-
tion: XCBC Encryption and XECB Authentication Modes, Oct 2000.
http://csrc.nist.gov/CryptoToolkit/modes/.

[84] O. Goldreich, S. Goldwasser, and S. Micali. How to construct Ran-
dom Functions. Journal of the Association of Computing Machinery,
33(4):792–807, Oct 1986.

[85] H. Handschuh, L.R. Knudsen, and M.J. Robshaw. Analysis of SHA–1 in
Encryption Mode. In D. Naccache, editor, Proceedings of The Cryptog-
raphers’ Track at RSA Conference, LNCS 2020, pages 70–83. Springer-
Verlag, 2001.

[86] C. Harpes. Partitioning Cryptanalysis. Post-Diploma Thesis in Informa-
tion Technology, Mar 1995. Swiss Federal Institute of Technology, Zurich,
Signal and Info. Proc. Lab.

[87] C. Harpes. Cryptanalysis of Iterated Block Ciphers, volume 7 of ETH
Series in Information Processing. Hartung-Gorre Verlag, Konstanz, Ger-
many, 1996. J.L. Massey, ed.

[88] C. Harpes, G. Kramer, and J.L. Massey. A Generalization of Linear Crypt-
analysis and the Applicability of Matsui’s Piling-Up Lemma. In L.C. Guil-
lou and J.-J. Quisquater, editors, Advances in Cryptology, Eurocrypt’95,
LNCS 921, pages 24–38. Springer-Verlag, 1995.



224 BIBLIOGRAPHY

[89] P.M. Hawkes. Asymptotic Bounds on Differential Probabilities and an
Analysis of the Block Cipher IDEA. PhD thesis, The University of Queens-
land, St. Lucia, Australia, Dec 1998.

[90] M.E. Hellman. A Cryptanalytic Time-Memory Trade-off. IEEE Trans.
on Information Theory, IT-26(4):401–406, Jul 1980.

[91] H. Hellström. Propagating Cipher Feedback Mode.
2nd NIST Modes of Operation Workshop, Aug 2001.
http://csrc.nist.gov/CryptoToolkit/modes/.

[92] H.M. Heys. An Analysis of the Statistical Self-Synchronization of Stream
Ciphers. In Proc. of INFOCOM 2001, pages 897–904, Apr 2001. Anchor-
age, Alaska.
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